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1. INTRODUCTION

Let E : [0,400) = R be a nonnegative, non-increasing, locally absolutely
continuous function. Assume that there exists another locally absolutely continuous
function p : [0,400) = R and there are three real numbers a, b and « such that

(1) bl < al in [0, +o0)
and
(2) p < —bE — E*T! ae. in [0,+00).

How can we estimate E(t) 7

Problems of this type often appear during the study of dissipative linear
evolutionary problems where E denotes the energy of the solution. It is sufficient
to consider the case where F(0) = 1. Indeed, if F(0) = 0, then £ = 0. On the other
hand, if £(0) > 0, then replacing E, p, a and b respectively by E/E(0), pE(0)=%~1,
aF(0)~* and aF(0)~“, we obtain a solution of (1), (2) satisfying F(0) = 1. We
will therefore assume in the sequel that

(3) E(0) = 1.

Let us briefly recall the LiAPUNOV method as usually applied to this problem
(see e.g. [1], [4], [B], [10], [11]). Fix a real number d satisfying

(4) d>a and d>b,
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and consider the function F' := dE+p. One can readily verify that ' : [0, +00) > R
1s nonnegative, non-increasing, locally absolutely continuous. Furthermore,

0<(d—a)E<F<(d+a)E in [0,+0c0)

and
F''< —(d+a)™ Pt ae in [0,400).
Dividing by F**! and integrating it follows that

{ F(0)e~t/(d+a) if o = 0;

P(t) < (F0)=* +a(d+a)=*" 1)~ ifa#£0

and therefore

flf—ge_t/(d‘l'a) if a=0;
E(t) < o (dbatat) "o
dte (dtprat) if a0

for all ¢ > 0 such that E(¢) > 0.

Next we minimize the right-hand side of this estimate with respect to d
satisfying (4). Since (as we shall see at the end of this paper) this method does not
lead to sharp estimates, we only consider henceforth the special case where

a=0 and a>0.

Then we have

(5) B(t) < SE et = fa)

for all t > 0 and for all d satisfying (4). (Observe that this inequality makes sense

and remains valid without the assumption E(t) > 0.)
An easy computation shows that

t—2a)d — (t 4 2a)a

/ _ =t/ (d+a (
fd)y=e /(d+a) @ T a)

Hence f is decreasing (resp. increasing) if (! — 2a)d — (t + 2a)a < 0 (resp. > 0).

If 0 < ¢ < 2a, then f is decreasing in (a,+o0) and tends to 1 as t — +o0.
Therefore we only obtain the trivial estimate F(#) < 1.

If ¢ > 2a, then f decreases in (a, A) and increases in (A, +00) where

t+ 2a
A_t—Qaa (> a).

We distinguish two cases:
If b < A, then choosing d = A in (5) we obtain that

i
L —t=20)/(20).

B < o
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If b > A, then choosing d = b in (5) we conclude that
b+a
B(t) < —t/(bta),
) < b—a°

Ifb < a, thenb < A forallt > 2a. If b > a, then b < A if and only if
20 <1< QaZf—Z.
We have thus proven the following:

Proposition 1. If E, p solve (1) — (3) with « = 0 and a > 0, then we have the
following estimates:

if 0 <t < 2a;
el2a=t)/(2a) 4 p g a and > 2a;
e2a=/(20) yfb > g and 2a <t < Qang;
ac=t/(b+e)  yfb > a and t > QaZf—Z.

—a

(6) E(t) <

S| N[
+Q|wg|w

fenl

Despite the very frequent application of this method, the above estimates are
not optimal. Applying a different method we shall prove

Theorem 2. a) The problem (1) — (3) has no solution unless « > —1, a > 0 and
a+b>0.

b) If E, p solve (1)—(3) with some o« > 0, then we have the following esti-
mates:

bl) If —a < b < a, then
{1 if0<t<(a+b);
B <4 ( aprpar VYo
(miss) sz,

and in the second case the inequality is strict;

b2) If b > a, then

1 if 0 <t < 2ay
8 E(t) < adbrat YT
(8) (1) < (7(1:;1"'2;@) if t > 2a.

(7)

c) If E, p solve (1) — (3) with o = 0, then we have the following estimates:
cl) If —a < b < a, then

1 fo<t<a+b;
(9) E(t) < {e(a+b—t)/(a+b) ift >a+0,

and in the second case the inequality is strict;
c2) If b > a, then

1 if 0 <t < 2a;
e2a=t)/{atb) it > 24,

(10) E() < {
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d) If E, p solve (1) — (3) with some —1 < « < 0, then we have the following
estimates:

dl) If —a < b < a, then

1 if 0 <t < (a+b);
-1/
(11) B(t) < | (4shtats ) if (a+b) <t <(atb)/|al;
0 if 1> (a+b)/lal,

and in the second case the inequality is strict;

d2) If b > a, then

1 if 0 <t < 2a;
-1/a
(12) B) < q () T 20 <t < (a+b)/]al;
0 ift > (a+b)/|al.

The above estimates are optimal.

REMARK. Letting o« — 0 in the formulae corresponding to o # 0 we find the
formulae for a = 0.

For the proof of Theorem 2, we will have to study a closely related integral
inequality, already used in [2], [3], [6]-[9]:

+oo
(13) /t E(s)*Tt ds < TE(t), t>0.

Here we only assume that F : [0,400) — R is a nonnegative, non-increasing
(hence measurable) function and that «, T are given real numbers. If £(0) = 0,
then E = 0. If £(0) > 0, then replacing £ by E/E(0) and T by TE(0)™® we
obtain a solution of (13) such that F(0) = 1.

Furthermore, in order to avoid the trivial solution

1 ift=0:
E(t)_{o if1>0,

we shall only consider consider solutions of (13) such that
(14) E0)=1 and EZ0 in (0,00).

The following result, interesting in itself, completes some earlier theorems of
Haraux [2], [3]:
Theorem 3. a) The problem (13) — (14) has no solution unless & > —1 and T > 0.

b) If E solves (13) — (14) with some o« > 0, then we have the following
estimates:

1 if0<t<T;
15 Et) < e
(15) (t) < (ﬁg;) ift>1T.
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Moreover, the second inequality is strict if E s right continuous.

d) If E solves (13) — (14) with o = 0, then we have the following estimates:

1 FO<t<T,
(16) E(t) < {e(T—t)/T >

Moreover, the second inequality is strict if E s right continuous.

e) If E solves (13) — (14) with some —1 < o < 0, then we have the following
estimates:

1 if0<t<T;
-1/ ]
(17) EW) < (F2%) © #T<t<T/al
0 ift > T/)al.

Moreover, the second inequality is strict if E s right continuous.
These estimates are optimal.

REMARK. As in the preceding results, letting o — 0 in the formulae corresponding
to a # Owe find the formulae for o = 0.

2. PROOF Of THEOREM 3

If @ < —1, then (13) is meaningful only if E(t) > 0 for all t > 0. However,

then E(s)**t! > EF(0)**! = 1 for all s > 0 and therefore the integral on the
left-hand side of (14) is infinite.

If T < 0, then (13) implies at once that F vanishes in (0, 4+00), contradicting
(14).

Thus part a) of the theorem is proven. Henceforth we may therefore assume
that &« > —1 and 7" > 0.

If 0 <t < T, then the estimates E(t) < 1 of (15)—(17) follow simply from the
non-increasingness of E. Also, there is nothing to prove if { > B where

B=sup{r>0| E(r) > 0}.

We may thus assume that 7' <t < B.
The formula

+oo
F(r) = / E(é;)o"l'1 ds

defines a nonnegative, non-increasing and locally absolutely continuous function
F :[0,00) = R. Tt follows from (13) that

_F/ Z T—Oc—lFOc-I—l
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almost everywhere in (0, 00). Dividing by F**! and integrating in (0, s), we obtain
for every 0 < s < B the following inequalities:

(F(0)=* 4 aT-2~1s)= /> if a £ 0;
N$§{F@kﬂ” if o= 0.

Since F'(0) < T by (13) — (14), these inequalities remain valid if we replace
F(0) by T'. Furthermore, we have

TH(a+1)s
F(s) > / E(r)*t dr > (T + as)E(T + (a + 1)s)* T,

Therefore, we deduce from the preceding inequalities the estimates

(T~ +aT-o"1s)=e if a £0;

a+1
(T+as)E(T+ (a+1)s) < {Te—s/T ifa =0,

or equivalently,

Ttos -1/ it 0:
(T + (a+1)s) < 4 F7) if o # 0
( ( ))—{e—s/T ifa=0,

for all 0 < s < B.

If @ > 0, then these estimates obviously remain valid for all s > 0. Choosing
s = % hence (15) — (16) follow.

If —1 < a < 0, then the right-hand side of the above estimate is meaningless
for s > T/|a|. Hence E(t) = 0 for all ¢t > T'/|«|, proving the third inequality in
(17). Furthermore, the above estimate obviously remains valid for all 0 < s < T'/|«].

t=T

Since 7' < t < B implies that 0 < % < T/|a|, we may choose s = &= in the

above estimate, and the second inequality of (17) follows.

Now assume that E is right continuous and prove that the second inequalities
of (15)—(17) are strict. Assume on the contrary that we have equality in the second
inequality of one of the formulae (15) — (17) for some ¢’ > T

(18) E(t') = { (m;’)‘”“ if o # 0;

e(T=t)/T if o« =0.

Using the right continuity of EF in t’, there is a constant 0 < 8 < 1 such that

t/ +00
/ Eotlds < ﬁ/ Bt ds.
0 0

It follows that the function

_JE@®) ifo<t<t,
G@)_{o it >
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also satisfies (13) — (14), even if we replace the constant 7"in (13) by 7. Applying
the already proved (weak) estimates (15) — (17), we have

;N —1/a
T+ at . )
G(t') < { (#esr) if o # 05
e(ﬁT_tl)/(ﬁT) lf o = 0

(Note that the third case in (17) cannot occur because G(¢') > 0 by assumption.)
Using (18) and the equality G(¢') = E(t') > 0, it follows that

, —1/0( ] _1/O‘
THat BT tot ] :
{ (T+aT) < (ﬁTJrOfﬁT) ifa70;
o(T—t")/T < (BT—t")[(6T) ifa=0.

But both inequalities contradict the property 5 < 1.

Let us now turn to the proof of the optimality of the estimates (15) — (17).
Fix a > —1, T > 0 and ¢’ > 0 arbitrarily. If 0 < ' < T', then we have to construct
a solution of (13) — (14) such that E(0) = E(¢') = 1. Choose simply

1 f0o<t<T,
Eit) = - ="
(t) {0 ift>1T.

The verification of (13) is immediate: the case ¢ > T is trivial, while for 0 <t < T
we have

+o0 T
/ E(s)*t! ds < / 1ds < T =TE(t).
t t

We may even construct continuous examples, e.g.,

1 if0<t<t
Et) =4 (T =)/(T—=t") ift' <t<T;
0 ift>T.

Ift' >T (fora >0) or T <t < T/]a| (for =1 < & < 0), then we have to
construct a solution of (13) — (14) such that

AN VT
E(t') = { (F=7) if a £ 0;

e(T=t)/T if o« =0.

If & =0, then let us choose

e=t/T ifo<t<t —T;
E(t) =q e &=D/T jf¢ _T<t<t;
0 if t > ¢

T / = a+l1>
E(t) = Taat'\ 71 t—T .
(T-I—gT f a+1 S t S t/a
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(Note that these functions are not continuous.)
The only nontrivial property to verify is (13) for 0 <¢ < t@:% Since Et! =
t'-T

—TFE" in (0, oc—-l—l) in all cases, we have in fact equality:

+co t'=T)/(a+1) t
/ E(s)*tl ds = / E(s)*tt ds—I—/ E(s)**! ds
¢ t (¢'=T)/(a+1)

VT VT T\t
TEX) —TE t— E
(*) <a+1)+< a+1) (a—l—l)

— TE().

The proof of Theorem 3 is completed.

3. PROOF OF THEOREM 2

We begin with a lemmarelating the problem (1)—(3) to the integral inequality
(13) — (14).

Lemma 4. If E, p solve (1) — (3) with some a, b and «, then E also solves
(13) — (14) with the same a and with T = a + b.

Proof. Since the solutions E of (1) — (3) are continuous, (3) implies (14).
It follows from (1) — (2) and from the non-increasingness of £ that

tl
(19) [ ds < BB+ < 2000l + Bl E)
¢
for all 0 <t < t' < 400. Letting t' — +00 hence we conclude that
+oo
[ B ds <2(al+ B EW
¢

for all ¢ > 0. Applying Theorem 3 it follows that F(t') — 0 as ¢’ — oco. Using
(1) we also obtain that p(t') — 0 as ¢’ — +oo. Hence, letting ¢’ — oo in the first
inequality of (19), we conclude that

/ B ds < b + pl0).

Applying (1) again, hence (13) follows. O

It follows at once from (1) and (3) that @ > 0. The rest of part a and parts
b1, ¢l, d1 Theorem 2 follow at once from Lemma 4 and Theorem 3, including the
strict inequalities.

It remains to prove the estimates (8), (10) and (12). Since the inequality
E(t) < 1 is obvious, we have to prove for & > —1, 6 > a > 0 and ¢ > 2a the
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following estimates:

(zetet) ™" iraso

(20) By <o t)/mb_) fo=0;
(aﬂiﬂ-—l—zooéfa) ifa<0andt < (a+b)/|al;
0 ifa<0andt> (a+b)/|al

Clearly, we may also assume that
t< B:=sup{r>0]| E(r) >0}.

Dividing the inequality (2) by E®*! then integrating in (0,¢) and using (1),
we obtain that

t t
/ bETTIE ds < / —1—pE 1 ds
0 0

t
= [—pE_O‘_l]6+/O —1— (a4 1)pE~*"2E ds

IA

t
aE(t)™*+aE(0)™* =t — (o + l)a/ B~ R ds,
0

whence

¢
(b+a+ aa)/ E~7 B ds < aBE(t)”* 4 aB(0)™* — 1.
0

Computing the integral, it follows easily that

thtat -1/
a a : .
a+b+2oca) if o > 0’

E(t) S e(Za—t)/(a+b) if o = 0;

atbtat “te
(a+b+2aa) lf a < 0

Comparing with (20), it only remains to show that F(#) = 0 if « < 0 and ¢t >
(a+b)/|a|]. Let us observe that for oo < 0 the right-hand side of the last inequality
vanishes for ¢t = (a+b)/|a|. It cannot occur if E(t) > 0, therefore E((a+b)/|a]) =0
and our claim follows.

Now we are going to prove the optimality of our estimates (7) — (12). Fix
a>—1,a>0,b> —a arbitrarily. Furthermore, fix ¢’ > 0 arbitrarily if @ > 0 and
fix 0 <t < (a+b)/|a| arbitrarily if —1 < o < 0.

Let us define a number R in the following way: set

0 ifb<aandt <a+b;
R={0 if b > a and ' < 2a;

() 220) if h > g and ¢/ > 2a.
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Furthermore, choose an arbitrary number
21 —— < R<Y¥
(21) 1o <<

if b < aand ¢/ > a+ b; its value will be precised later.
These definitions are correct and 0 < R <t in all cases.
Next we define the function E. For o > 0 we set

atbtat —1/ :
(a—-l—b) lfo S t S R,
E(t) =< E(R) if R<t <,

alt—tE(R)® —la
B(R) (14 o) i1t
For o« = 0 we define

e~ t/(ath) if 0<t<R;
E(t) =< E(R) irTR<t <
E(R)e' =0)/(atbtR=t') jf 4 > ¢/,

Finally, for —1 < a < 0 we set

atbtoat —t/e . )
(a—-l—b) if 0 <t <R,
Bty = { F(R) L. HR<ESE
a(t—t"YE(R)® TR
E(R) (1 + a+b_t(t/t_R)E(R)a) if t/ <t < t//;
0 if ¢ >t

where
a+b— (' — R)E(R)*

|| E(R)~

If 0 <t <t then a+b+ at > 0; hence E(t) is correctly defined and strictly
positive. In particular, F(R) > 0. Let us show that

t// — t/ +

(22) (' —R)E(R)* <a+b
and
(23) (' — R)F(R)* < 2a.

Indeed, if b < a and ' < a + b, then
(' —R)E(R)* =t <a+b< 2a.
If b > a and t' < 2a, then

(' —R)E(R)* =t <2a<a+b.
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If b > a and t’ > 2a, then
(' —R)E(R)*=2a<a+b
by a simple computation. Finally, if b < a and ¢’ > a + b, then

(' —R)(a+b)
a+b+aR

because R > (t' —a—b)/(1 + «) (see (21)).

(' — R)E(R)* = <a+b<2a

Using (22) one can readily verify that E is a correctly defined, nonnegative,
non-increasing, locally absolutely continuous function for all ¢ > 0, and EF(0) = 1.
Let us assume for the moment the existence of a locally absolutely continuous
function p satisfying (1) —(2), and prove the optimality of the estimates of Theorem
2.

Let us compute E(t') = F(R). If b > a, then
1 if t' < 2a;
’ _1/O‘
E(t') = (%) if ¢! > 2a and a # 0;
e(2a=t")/(a+b) if ! > 2a and o = 0.

This proves the optimality of the estimates (8), (10), (12). If b < a, then

1 ift <a+b
/ at+b+aR —t/e eyl
E@) = (W) ift' >a+band o # 0;
e~ B/ (atb) ift! >a+band o =0.

Letting R — (' — a —b)/(1 + «) (see (21)) hence the optimality of the estimates
(7), (9), (11) follows.

It remains to construct a locally absolutely continuous function p : [0, +00) —
R satisfying (1) and (2). Define
aB(t) if 0<t<R;
p(t) =< aB(R)— (t — R)E(R)*T! if R<t <t
(a— (' = RER)*)ER) ift>1.

Then p is locally absolutely continuous. The property (1) is obvious for
0 <t < R;fort> R it follows easily using (23):

aB(t) > plt) > (0 — (' = RYE(R)*)VE(t) > —aB(t).
Next we claim that
P =—bE — E*t! ae. in [0,+00);
in particular, (2) is satisfied. Indeed, in (0, R) we have

(bE' + ') (1) = (a+ D)E'(1) = (1)
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In (R, ') we have
(bE'+ ) (t) = —E(R)*T! = —E(1)**.
In (¥, 4+00) we have
(BE +p')(t) = (a+b— (' = R)E(R)*) E'(t) = —E(t)**!

by another simple computation.
The proof of Theorem 2 is completed.

4. COMPARISON OF PROPOSITION 1 AND THEOREM 2

We are going to show that the estimates of Proposition 1 are optimal only in
trivial cases. As in Proposition 1, assume that & = 0 and a > 0.

a) If b < —a, then (1) — (3) has no solution; this was not revealed by the
LiapunNov method: we only obtained in this case the estimate

1 if 0 <t < 2a;
E(t)g{ if 0 <t < 2q;

;—ae(za_t)/(za) if t > 2a

(cf. (6)).
b) If —a < b < a, then we have to compare the estimates (6) and (9). For

0 <t < a+bthey both give F(t) < 1. For a+b <t < 2a the estimate (9) is better

because
e(a+b—t)/(a+b) < 1.

Finally, for t > 2a the estimate (9) is better again because

platb=t)/(att) o L (2a-1)/(2a)
2a

Indeed, we have
elatb=t)/(a+b) - (2a—1)/(2a) ie(2a—t)/(2a).
- 2a
c) If b > a, then we have to compare the estimates (6) and (10). For 0 <t <
2a they both give E(t) < 1.

In order to show that for ¢ > 2a2E2 the estimate (10) is better than (6), we
have to prove that

(24) o=t/ (att) o DA tyats)
b—a

Putting © = 2a/(a + b) we have 0 < # < 1, and the inequality takes the form
e” < 1/(1 — ). This inequality is trivially satisfied:

ex:Zf,—j<in:1/(l—x).
i=1 i=1
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Finally, in order to show that for 2a < ¢ < QaZfZ the estimate (10) is better
than (6), we have to prove the inequality

(a=0/(atb) o L (2a-0)/(2a)
2a

Keeping @ and ¢ fixed, let us increase b until ¢ = 2a2‘|_'g (then the left-hand side
of the inequality increases). Then our inequality coincides with (24) and the claim

follows.
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