UnN1v. BEOGRAD. PUBL. ELEKTROTEHN. Fak.
Ser. Mat. 7 (1996), 36—44.

APPROXIMATION THEOREMS
FOR SOME OPERATORS
OF THE SZASZ-MIRAKJAN TYPE
IN EXPONENTIAL WEIGHT SPACES

L. Rempulska, M. Skorupka

In this note we define some linear positive operators A, and B, of the Szasz—
Mirakjan type in the space of continuous functions having exponential growth
an infinity. In Sec. 2 we give some auxiliary results. In Sec. 3 we prove two

approximations theorems for these operators.

1. PRELIMINARIES

1.1. Let C' = C(Rg) be the set of all real-valued functions continuous on
Ry :=[0,4+00). Analogously as in [1] for p > 0 we define

(1) wp(@) = e, 2 € Ry,

Cp,:={feC: w,-fisuniformly continuous and bounded on Ry},

2 1l = sup wy(a) £ (@)

0

For f € Cp, p> 0, and for § > 0 and 0 < o < 1 we define the modulus continuity
w(f,Cp;d) and the class Lip (Cp, o) ([2])

w(f,Cp;d) = S -+ h) = FC)lle,,

Lip(Cp, @) := {f €C,: w(f,Cp;0)=0(0%) asd -0+ }

It is easily observed that if ¢ > p > 0, then C}, C Cy and ||fl|c, < ||f||c, for every
fedc,.
1.2. The SZAsZ—MIRAKJAN operators

+oo
Sn(f’x):e—an(nl‘)kf<§)’ xERO’ nEN’

k!
k=0
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(N :={1,2,...}), for functions f € C, in the norm of the space Cy, ¢ > p, are
examined in [1].

In our paper we introduce the linear positive operators A, and B, of the
SzASZ—MIRAKJAN type in the space O,

B A= e (04 5 Eg,f)jk;, r(2E).

k=0

1 2k+1
) Balf;2) = 1—|—sinhnx< +Z 2k+1 ) /f dt)

26+1 2k+3 .
n € N, z € Rg, where I, = [ + , + ] and sinh z, cosh x are the
n n

e -

elementary hyperbolic functions, i.e. sinh z =

The operators A, and B, are well-defined for all f € C'p, p>0. A, and B,
are an operators from (), into Cy for any ¢ > p, provided n is large enough. In
Sec. 2 we shall give some properties of these operators. In Sec. 3 we shall two
direct approximation theorems for A, and B, using the modulus of continuity of
function f € C,. These theorems are similar to suitable results given in [1] for the
S7ZASZ-MIRAKJIAN operators S, .

In Sec. 2 and 3 by M, , we shall denote some suitable positive constants
depending only on indicated parameters p, q.

— €

2. AUXILIARY RESULTS

Denote by

sinh nx cosh nx

(5) Sne) = i T = T e

for £ > 0 and n € N. By elementary calculations from (3)—(5) we obtain the
following two lemmas.
Lemma 1. For each n € N and x € Ry we have

Ap(liz) =1, By(Liz)=1, A,(t;z) = «T(nz),
Bn(t;x) = An(t;x) + %S(nx), Ap (%) = 22 S(nx) + %T(nx),

B, (t%; x) n(tz;x)—i—%An(t;x)—l—;%S(nx)

=4
(2t 3z
= (x + e S(nz) + - T(nz).
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Lemma 2. Foralln € N, & € Ry and p > 0 we have

1+ sinh (ep/” nx)
1+ sinh nx

At ) = ertn € 0)
1+ sinh nz

bl

An(ept; l‘) =

sinh (ep/” nx) x Join cosh (ep/” nx)

A (%Pt ) = 22eP/n
(Fesa) = a7 1+ sinh ne n 1 + sinh na

1
Bn pt. :l( 2p/n_1) An pt. l_l( 2p/n_1) -
(") 2p € (5 2) + 2p ¢ 1 + sinh nz’

1
Bn(tept;l,) — 22 (6217/71 _ 1) An(tept;x) + —62p/nAn(6pt;l‘)
p p

1 1 1
——Bn(ept;x)——(eZP/"—l) —_—,
p P 1+ sinh na

2
By (t*et; x) = 22 (62p/n - 1) A, (2Pt 2) + = /M A, (1eP 2)
P p

2 2 2 1
+ — Ap(efs ) = = Bu(te’' o) = — ————
np p np 1+ sinh nx

(7)) Ap ((t —2)%2) = A (e 2) — 20 An (tef's 2) 4+ 27 Ay (75 2)

9eP/n 32 sinh (e?/?nzx) — cosh (e?/" nx)
= 2eP/My
1+ sinh nz

o, 14 (1 —e/?)sinh (e?/"n) R cosh (e?/"nz)

T 1+ sinh nz n 1+ sinh nz

8 By, ((t — 2)%ePt; 2) = B, (26" ) — 22 B, (te??; 2) + 22 By, (¢!l 2
( ) (( ) 3 ’ ’ bl
_ n 2p/n 2 _pt.
=2 (e —1) A, ((t—x) e ,x)

n n n A
( v/ - (62p/ — 1)) n ((t - l‘)ept; l‘)
2 n n n
p 2p/ 3 ( ? / 1)) lln (6 t’x>

P

2p/ z’
n _ 1) i
) 1 4 sinh nz

2p/n _ 9 _(Zp/n_l) o
* ( e 1+ sinh ne

i
g
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2 2 2]0/ n (2]0/ ) 1
42 Ly 7L SR )
+ ( np + p? (6 2p c 1+ sinh nz

Using Lemmas 1 and 2, we shall prove some inequalities.

Lemma 3. For all x € Ry and n € N holds

(9) An((t—x)z;x)gélxj;l,
(10) Ba((t—2)%0) < 3 24

Proof. By (3)-(5) and Lemma 1 for all # > 0 and n € N we have
A, ((t —x)%; x) = A, (t% ) — 20 A, (tx) + 22 A, (1; )
= 2*(1+ S(nz) — 2T (nz)) + r T(nx)
n

and analogously

2 4
B, ((t —x)% x) = A, ((t — )% x) — % (T(nx) — S(nx)) + Tz S(nz).
Since 1 —e ™™ >0 and |1 —2e¢7"*| < 1 for # > 0 and n € N, we get
1 2 2
11 —
(11) 1+sinhne = en® 41 — ens’
2|1 —2e7 | 222 4
21 9T(nay = L2 2 4
w1+ S(ne) (na)] 1+sinhnz — e — n2’
(12) 0< T(nz) <1, 0 < S(nx) <1,

for # > 0 and n € N. From these we immediately obtain (9) and (10).

Lemma 4. Suppose that p >0, ¢ > p and ng = ng(p, q) be a fired natural number
such that

(13) no > p (m]%)_l.

Then there exists a positive constant M, , depending only on p,q such that

(11 An(ers ), <2,
(15) [Buters )], < 2o+ e,
(16) wy(2) |An ((t — J:)ept; a:)| < M, 4 x—“ ,

n



40 L. Rempulska, M. Skorupka

r+1
(17) () A (1= 2)ex) < My L

r+1
(18) wy(z)By ((t — J:)Zept;x) < M, 4 .

for all > 0 and n > ng.
Proof. Let p > 0 and ¢ > p be a fixed numbers. Similarly as in [1] we write
(19) Dn ::n(ep/"—l), n € N.

The sequence (py)$° is decreasing and

(20) p<pn<p6p/”§pep for n € N.

If ng is a fixed integer satisfying (13), then

(21) g > pe?!™ > po, > py for n> ng.
By (1), (11) and (19) we have

sinh (ep/"nx)

< 6_(q_pn)x
1+ sinh nx

(22) wq(w :
cosh (ep/”nx)
1+ sinh nx

which by Lemma 2 and (20)—(21) yields

(23) wy(2) < 2e=(47P0)T  for g >0, né€N,

1 + sinh (e?/"
wy (@) Ap (P x) = €79 +1SI—|I—1$ifleh nxnx) < 14e @7 <9 for 2 >0, n > ng.
From this and (2) follows (14).

We observe that for p > 0 and n € N holds

2 2
(24) o< e/n 1< L rin ‘1—21 (62”/"—1)‘ < 2P erin,
P

n - n
Using Lemma 2, (6), (7), (11) and (19)-(24), we obtain

Pl (cosh (ep/"nx) — sinh (ep/" nx) )

re~ 4"
1+ sinh nx

(ep/" — 1) sinh (ep/"nx) — 1‘

wy(@) [An ((t = w)e;2)| =

+

—qe
e (ep/n + P or/nginy (ep/n nx) + 1)
1+ sinh nx n
1
2(e? + 1) - + 2peP L —la=pa)e < M, , zrl ’
ent n - ’ n

A
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wg(z)An ((t — J:)Zept; x)
zle— 1"
<
— 1+ sinhnz
4 9ep/n L o= (a=pn)e
n

(er/" +1+ (ep/"nx — 1) sinh (ep/"nx))

1
<427 +1) 5 + P epin p2 =(a=pn)e
n n
1 D 2 1
<qperynitlort 2 oyt
n n (q_pnu) n

for all # > 0 and n > ng. Hence the proof of (14)—(17) is completed.
Similarly, using (14), (16) and (17), we derive (18) from (8).

Lemma 5. If f € C, with some p > 0 and if q, ng satisfy the assumptions of
Lemma 4, then

(25) 140 (f5 e, < 201Ale,

(26) 1Ba(f: ), < 2(p+ e ||fllc,

for all n > ng.
Proof. From (1)-(4) follows

14n (£ )lle, <Iflle, [An(ers )], »

1Ba(f: ), <Iflle, [Bale’s )],
for n € N, which by (14) and (15) imply the desired inequalities (25) and (26).

3. APPROXIMATION THEOREMS

In this part we shall give two theorems on the degree of approximation of
functions belonging to the space C), by the operators A, and B, in the norm of
Cyq, ¢ > p. Since the proofs of these theorems for the operators B,, are similar to
the proofs for A,,, we shall prove our results only for the operators A,,.

Theorem 1. Suppose that g € C’; = {f eC,: f € Cp} with somep > 0,q > p
and ng is a fired natural number satisfying the condition (13). Then there exists a
positive constant M, , depending only on p, q such that

l‘—i—l 1/2

(27) wy()| An (g 2) — 9(2)] < My ', ( ) |
l‘—i—l 1/2

wq(x)|Bn(g,l‘) —g(l‘)| S Mpyq ||g/||Cp ( n ) )
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for all > 0 and n > ng.
Proof. Let # > 0 be a fixed point. If g € C’;, then

t

g(t) —g(x) = /g/(u) du, t>0,

and by (3) and (6) for every n € N we have

t

Au(g(0); ) — g(z) = A, ( [ wydu )

xr

Since

<llg'lle, (e + et — z],

)

< ||g/||cp wy(2) (An(|t — xleft; x) + eP7 A, (|t —xl; l‘))
Using the HOLDER inequality and (6), (9), (14) and (17), we get

Ap(lt —z];z) <2 (An((t— x)z;x))l/z(An(l;x))l/z <3 <x+ 1)1/2’

¢ ¢
1
/ /
g (u)du| < |g'llc, /—du

xr xr

we get

- n

1/2 1/2

wq(®) An (|t — ze”;2) < 2wy(x) (An((t—x)zept;x))

1\ 12
< Mp,q(” ) ,

(An (ept; l‘))

n

for all n > ng. Summing up, we obtain the desired inequality (27).

Theorem 2. Suppose that f € Cp, with some p > 0, and the numbers ¢ and ng
satisfy the assumptions of Theorem 1. Then there erists a positive constant M, 4

depending only on p and q such that for all x > 0 and n > ng hold the following
mequalities

. 1/2
(28) wo@)|Aa(Fi2) = F(@)] < My g0 (f, & (22 ) ,

x 1/2
wy(@)[Ba(f52) = f(@)] < My qw (f,Cb§<__%;l) ).
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Proof. Let f, be the STEKLOV mean of f € (), i.e.

bl»—k

h
/fa:—l—u x>0, h>0.
0

For > 0 and h > 0 we have

bl»—k

fule) = @) = 5 [ (Flatu) = fe)dt, fife) = 3 (7l + ) = 1),

which imply f, € C} and by (2)

(29) s = flle, < w(f,Cuih),

(30) 1ille, < h™"w(f, Cysh).
It is obvious that for every > 0, n € N, h > 0 and ¢ > p holds
D) An(f52) = F@)] < wy@)([An(f = faio)]
+ A 2) = fale)] + [fale) = F(2)]).
Using Lemma 5 and (29), we get
2)|An(f = faoi2)| < 20f = fulle, < 20(f, Cysh)

for # >0, h > 0 and n > ng. By Theorem 1 and (30) we have

1/2
2 [An s ) = n(@)] < Myl fille, (gE: 1)

r+1

1/
< My R w(f,Cyi ) ( ) , for >0, n>ny and h > 0.

Combinig these, we obtain

1/2
) |An(f; ) ()| <w(f,Cp;h) (3+Mpth—1 <x+1) )

n

r+1

/
for every 2 > 0, n > ng and h > 0. Setting h = ( ) , for every fixed z > 0

and n > ng, we obtain (28).
From Theorem 2 we can derive the following two corollaries.
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Corollary 1. If f € C, with some p > 0, then

lim A, (f;2) = f(z), lim By(f;z) = f(z),

n—4oo n—4oo

Jor all @ > 0. Moreover, the convergence holds uniformly on every interval [0, a],
a > 0.

Corollary 2. Let f € Lip (Cp, o) with some p > 0 and 0 < o < 1 and let ¢ > p.
Then there exists a positive constant M, , depending only on p,q such that

o) [Aulr) = 1] < e (221
o) |t e) )| < 1, (1)

for all > 0 and n > p(In(q/p))~*.
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