HALPERN-LÄUCHLY THEOREM ON THE PRODUCT OF INFINITELY MANY TREES IN THE VERSION OF STRONGLY EMBEDDED TREES

Goran Ramović

Abstract

Laver in [1] formulated a special case of Halpern-Läuchly theorem in the version of strongly embedded trees on the product of countable many trees. In this article a general version of this theorem is proved.

Laver ([1] the corollary of Theorem 5) formulated a special case of HaL-PERN-LÄUCHLY theorem in the version of strongly embedded trees on the product of countable many trees. He concentrated on the case where the countable sequence of $\left\langle\omega,\langle\omega\rangle\right.$-trees belongs to class K_{ω}. In the proof of Theorem 5 an error appeared. Namely, Lema 4^{\prime} was formulated for the countable sequence of $\langle\omega,<\omega\rangle$-trees of class K_{ω} and its proof was basically referred to the properties of the sequence of trees of that class. The assertion of Lemma 4^{\prime} was then, in the proof of Theorem 5, applied to the countable sequence of $\langle\omega,\langle\omega\rangle$-trees which does not belong to class K_{ω}.

In this article, we formulate and prove the general Halpern-Läuchli theorem in the version of strongly embedded trees on the product of countably many trees. We suppose that the reader is familiar with Laver's [1] and Milliken's [2] articles where the same terminology and denotation are used.

The idea of proof of the following theorem can be explained as follows. Let f be the partitioning of $\underset{i \in \omega}{\otimes} T_{i}$ into $r \in \omega \backslash 1$ partitions. Surjection F from $\underset{i \in \omega}{\otimes} T_{i}^{\prime}$ onto $\underset{i \in \omega}{\otimes} T_{i}$ preserves the order and the levels, shifting to more regular trees. In addition, surjection G from $\underset{i \in \omega}{\otimes} T_{i} \underset{j \in \omega}{\otimes} T_{i j}^{\prime \prime}$ onto $\underset{i \in \omega}{\otimes} T_{i}^{\prime}$ preserves the order and the levels, and the sequence of ω-trees with finitely many branches per tree, restricted to the levels of an infinite subset of ω, is mapped into the sequence of strongly embedded trees. With the help of surjections F and G, partitioning $h=f \circ F \circ G$ of set $\underset{i \in \omega}{\otimes} T_{i} \underset{i \in \omega}{\otimes} T_{i j}^{\prime \prime}$ into r parts is defined. Afterwards, on the basis of the corollary which concludes the series of lemmas, as well as on the properties of surjections F and G, the proof of the theorem follows.

[^0]Theorem. Let suppose that:

$$
\vec{T}=\left\langle T_{i}: i \in \omega\right\rangle \text { is a sequence of }\langle\omega,\langle\omega\rangle \text {-trees }
$$

$$
f: \otimes{ }_{i \in \omega} T_{i} \rightarrow r \text {, where } r \in \omega \backslash 1 \text {. Then } \vec{t}=\left\langle t_{i}: i \in \omega\right\rangle, \vec{S}=\left\langle S_{i}: i \in \omega\right\rangle
$$

and $k \in r$ exist for which the following hold:

$$
\begin{align*}
& \vec{t} \in \prod_{i \in \omega} T_{i} ; \tag{1}\\
& \vec{S}=\operatorname{Str}^{\omega}\left(\left\langle T_{i}\left[t_{i}\right]: i \in \omega\right\rangle\right) ; \tag{2}\\
& f_{i \in \omega}^{\prime \prime} S_{i}=\{k\} .
\end{align*}
$$

Proof. Let us assume that the theorem has been proved for $r \leq 2$. Let $r>2$. Function g will be defined from $\underset{i \in \omega}{\otimes} T_{i}$ into 2 in the following way. For an arbitrary $\vec{x} \in \underset{i \in \omega}{\otimes} T_{i}$ the following shall be true:

$$
g(\vec{x})= \begin{cases}0 & \text { if } f(\vec{x}) \in r-1 \\ 1 & \text { otherwise }\end{cases}
$$

Then $\vec{t}=\left\langle t_{i}: i \in \omega\right\rangle, \vec{S}=\left\langle S_{i}: i \in \omega\right\rangle$ and $k \in 2$ exists to which (1), (2) and

$$
g_{i \in \omega}^{\prime \prime} \otimes S_{i}=\{k\}
$$

are applicable. If $k=0$, we shall apply an inductive assumption, but in case $k=1$ the theorem is proved immediately.

Let us proceed to proving the theorem for $r=2$. We can obviously still retain generality and suppose that the following applies to each $i \in \omega$:

$$
\begin{align*}
& T_{i} \subseteq{ }^{<\omega} \omega \tag{3}\\
& \forall x \in T_{i} \forall y \in^{<\omega} \omega \quad\left(y \subseteq x \rightarrow y \in T_{i}\right) \tag{4}\\
& \forall x \in T_{i} \forall y \in^{<\omega} \omega \quad\left(|x|=|y| \& \forall n \in \operatorname{dom}(x)(y(n) \leq x(n)) \rightarrow y \in T_{i}\right) \tag{5}\\
& \forall x \in T_{i} \forall y \in T_{i} \quad\left(x \leq_{i} y \leftrightarrow x \subseteq y\right) \tag{6}
\end{align*}
$$

For the reason mentioned in (6), the relation \leq_{i} will hereinafter be denoted \leq. It can easily be seen that a function g_{i} from ω into $\omega \backslash 1$ exists for every $i \in \omega$, such that

$$
\forall n \in \omega \forall x \in T_{i}(n)\left(\left|\operatorname{IS}\left(x, T_{i}\right)\right| \leq g_{i}(n)\right)
$$

We call sequence $\vec{T}=\left\langle T_{i}: i \in \omega\right\rangle$ an $\langle\omega, \leq \vec{g}\rangle$-sequence of trees, where $\vec{g}=\left\langle g_{i}: i \in \omega\right\rangle$. The sequence of $\left\langle\omega,\langle\omega\rangle\right.$-trees wil be denoted $\vec{T}^{\prime}=\left\langle T_{i}^{\prime}: i \in \omega\right\rangle$ to which (3)-(6), as well as for every $i \in \omega$, the following applies:

$$
\forall n \in \omega \forall x \in T_{i}^{\prime}(n)\left(\left|\operatorname{IS}\left(x, T_{i}^{\prime}\right)\right|=g_{i}(n)\right)
$$

We call sequence $\vec{T}^{\prime}=\left\langle T_{i}^{\prime}: i \in \omega\right\rangle$ an $\langle\omega, \vec{g}\rangle$-sequence of trees.
Lemma 1. There is a surjection F from $\underset{i \in \omega}{\otimes} T_{i}^{\prime}$ onto $\underset{i \in \omega}{\otimes} T_{i}$, with the following properties:

$$
\begin{equation*}
\forall \vec{x} \in \underset{i \in \omega}{\otimes} T_{i}^{\prime} \forall \vec{y} \in \underset{i \in \omega}{\otimes} T_{i}^{\prime}(\vec{x} \leq \vec{y} \rightarrow F(\vec{x}) \leq F(\vec{y})) \tag{7}
\end{equation*}
$$

$$
\begin{gather*}
\forall n \in \omega \forall \vec{x} \in \underset{i \in \omega}{\otimes} T_{i}^{\prime}\left(\vec{x} \in \prod_{i \in \omega} T_{i}^{\prime}(n) \leftrightarrow F(\vec{x}) \in \prod_{i \in \omega} T_{i}(n)\right) ; \tag{8}\\
\forall \vec{S}^{\prime} \in \operatorname{Str}^{\omega}\left(\vec{T}^{\prime}\right) \exists \vec{S} \in \operatorname{Str}^{\omega}(\vec{T})\left(F_{i \in \omega}^{\prime \prime} S_{i}^{\prime}=\underset{i \in \omega}{\otimes} S_{i}\right) . \tag{9}
\end{gather*}
$$

Proof. For each $i \in \omega$ surjection F_{i} from T_{i}^{\prime} onto T_{i} is defined so that:

$$
\begin{aligned}
& \forall x \in T_{i}^{\prime} \forall y \in T_{i}\left(F_{i}(x)=y \leftrightarrow|x|=|y| \&\right. \\
& \left.\forall n \in \operatorname{dom}(x)\left(y(n)=\min \left(x(n),\left|\operatorname{JS}\left(y \uparrow n, T_{i}\right)\right|-1\right)\right)\right) .
\end{aligned}
$$

It can be easily be checked that for each $i \in \omega$ the following holds:

$$
\begin{aligned}
& \forall x \in T_{i}^{\prime} \forall y \in T_{i}^{\prime}\left(x \leq y \rightarrow F_{i}(x) \leq F_{i}(y)\right) \\
& \forall n \in \omega \forall x \in T_{i}^{\prime}\left(x \in T_{i}^{\prime}(n) \leftrightarrow F_{i}(x) \in T_{i}(n)\right) \\
& \forall S^{\prime} \in \operatorname{Str}^{\omega}\left(T_{i}^{\prime}\right) \exists S \in \operatorname{Str}^{\omega}\left(T_{i}\right)\left(F_{i}^{\prime \prime} S^{\prime}=S\right)
\end{aligned}
$$

We can now define surjection F from $\underset{i \in \omega}{\otimes} T_{i}^{\prime}$ onto $\underset{i \in \omega}{\otimes} T_{i}$ with the help of the condition: $\forall \vec{x} \in \underset{i \in \omega}{\otimes} T_{i}^{\prime} \forall \vec{y} \in \underset{i \in \omega}{\otimes} T_{i}\left(F(\vec{x})=\vec{y} \leftrightarrow \forall i \in \omega\left(F_{i}\left(x_{i}\right)=y_{i}\right)\right)$.

It can easily be checked that F fulfils the conditions (7) - (9).
Now, for every $j \in \omega$, a unique element of set ${ }^{j} 1$ as $0^{(j)}$ will be denoted. In addition, a $T_{i j}^{\prime \prime}$ will denote tree $T_{i}^{\prime}\left[0^{(j)}\right]$ for every $i, j \in \omega$.
Lemma 2. There is a surjection G from $\underset{i \in \omega j \in \omega}{\otimes} T_{i j}^{\prime \prime}$ onto $\underset{i \in \omega}{\otimes} T_{i}^{\prime}$ with the following properties:

$$
\begin{align*}
& \forall \vec{x} \in \underset{i \in \omega}{\otimes} \underset{j \in \omega}{\otimes} T_{i j}^{\prime \prime} \forall \vec{y} \in \underset{i \in \omega j \in \omega}{\otimes} T_{i j}^{\prime \prime}(\vec{x} \leq y \rightarrow G(\vec{x}) \leq G(\vec{y})) ; \tag{10}\\
& \forall n \in \omega \forall \vec{x} \in \underset{i \in \omega}{\otimes} \underset{j \in \omega}{\otimes} T_{i j}^{\prime \prime}\left(\vec{x} \in \prod_{i \in \omega j \in \omega} \prod_{i j}^{\prime \prime}(n) \leftrightarrow G(\vec{x}) \in \prod_{i \in \omega} T_{i}^{\prime}(n)\right) ; \tag{11}\\
& \forall \vec{x} \forall \vec{S} \forall A \exists \vec{y} \exists \vec{R}\left(\vec{x} \in \underset{i \in \omega}{\otimes} \underset{j \in \omega}{\otimes} T_{i j}^{\prime \prime} \& \forall i \in \omega \forall j \in \omega \forall k \in \omega \forall l \in \omega\right. \tag{12}\\
& \exists m \in \omega\left(\left|x_{i j}\right|<\left|x_{k l}\right| \rightarrow\left|x_{i m}\right|=\left|x_{k l}\right|\right) \& \forall i \in \omega \forall j \in \omega\left(S_{i j}\right. \text { is a } \\
& \text { downwards closed } \omega-\text { subtree of the tree } T_{i j}^{\prime \prime} \text { with } g_{i}\left(\left|x_{i j}\right|\right) \text { branches, } \\
& \text { which includes the set } \left.\operatorname{IS}\left(x_{i j}, T_{i j}^{\prime \prime}\right)\right) \& \forall i \in \omega \forall j \in \omega\left(0^{(j)} \leq\right. \\
& \left.x_{i j}\right) \& A=\left\{\left|x_{i j}\right|: i \in \omega \& j \in \omega\right\} \rightarrow \vec{y} \in \prod_{i \in \omega} T_{i}^{\prime} \& \vec{R} \in \\
& \left.\operatorname{Str}^{\omega}\left(\left\langle T_{i}^{\prime}\left[y_{i}\right]: i \in \omega\right\rangle\right) \& G^{\prime \prime} \underset{i \in \omega}{\otimes} \otimes_{j \in \omega}^{\otimes} S_{i j}=\underset{i \in \omega}{\otimes} R_{i}\right) .
\end{align*}
$$

Proof. For every $i \in \omega$ we define surjection G_{i} from $\underset{i \in \omega}{\otimes} T_{i j}^{\prime \prime}$ onto T_{i}^{\prime} in the following way. For $n \in \omega$ and $\vec{x} \in \prod_{j \in \omega} T_{i j}^{\prime \prime}(n)$ the element $G_{i}(\vec{x})$ is determined by the following conditions:

$$
G_{i}(\vec{x}) \in T_{i}^{\prime}(n) ; \quad \forall m \in n\left(G_{i}(\vec{x})(m)=\sum_{j \leq m} \bmod g_{i}(m)^{x_{i j}}(m)\right)
$$

It could be easily checked that for each $i \in \omega$ the following is true:

$$
\begin{aligned}
& \forall \vec{x} \in \underset{j \in \omega}{\otimes} T_{i j}^{\prime \prime} \forall \vec{y} \in \underset{j \in \omega}{\otimes} T_{i j}^{\prime \prime}\left(\vec{x} \leq \vec{y} \rightarrow G_{i}(\vec{x}) \leq G_{i}(\vec{y})\right) \\
& \forall n \in \omega \forall \vec{x} \in \underset{i \in \omega}{\otimes} T_{i j}^{\prime \prime}\left(\vec{x} \in \prod_{j \in \omega} T_{i j}^{\prime \prime}(n) \leftrightarrow G_{i}(\vec{x}) \in T_{i}^{\prime}(n)\right) \\
& \forall \vec{x} \forall \vec{S} \forall A \exists R\left(\vec { x } \in \prod _ { j \in \omega } T _ { i j } ^ { \prime \prime } \& \forall j \in \omega \left(S_{i j} \text { is a downwards closed } \omega\right.\right. \text { - }
\end{aligned}
$$ subtree of the tree $T_{i j}^{\prime \prime}$ with $g_{i}\left(\left|x_{i j}\right|\right)$ branches, which includes the set $\left.\operatorname{IS}\left(x_{i j}, T_{i j}^{\prime \prime}\right)\right) \& \forall j \in \omega\left(0^{(j)} \leq x_{i j}\right) \& A=\left\{\mid x_{i j}: j \in \omega\right\} \rightarrow y \in T_{i}^{\prime} \& R \in$ $\left.\operatorname{Str}^{\omega}\left(T_{i}^{\prime}\right) \& G_{i}^{\prime \prime} \underset{j \in \omega}{\otimes^{A}} S_{i j}=R\right)$.

Let us suppose that $\vec{x} \in \underset{i \in \omega}{\otimes} \underset{j \in \omega}{\otimes} T_{i j}^{\prime \prime}$. We shall determine $G(\vec{x})=\left\langle G_{i}\left(\left\langle x_{i j}\right.\right.\right.$: $j \in \omega\rangle): i \in \omega\rangle$. Function G defined in this way, represents a surjection from $\underset{i \in \omega j \in \omega}{\otimes} T_{i j}^{\prime \prime}$ onto $\underset{i \in \omega}{\otimes} T_{i}^{\prime}$ with properties (10)-(12).

We can now define function h from $\underset{i \in \omega j \in \omega}{\otimes} T_{i j}^{\prime \prime}$ into r in the following way:

$$
\begin{equation*}
h=f \circ F \circ G \tag{13}
\end{equation*}
$$

For each $i \in \omega, n \in \omega$ and $A \subseteq T_{i}$ we can define the set proj $\left(n, A, T_{i}\right)$ as follows: $\forall B\left(B \in \operatorname{proj}\left(n, A, T_{i}\right) \leftrightarrow B \subseteq T_{i}(n) \& \forall a \in A \exists!b \in B(a \leq b \vee b \leq a)\right)$.

For each $d \in \omega \backslash 1, n \in \omega$, cofinal subset C of set $\underset{i \in d}{\otimes} T_{i}$ and $f \underset{i \in d}{\otimes} T_{i} \rightarrow 2$, $\Phi(n, C, f)$ denotes the statement:
$\forall \vec{c} \in C \forall\left\langle B_{i} \in \operatorname{proj}\left(n, \operatorname{IS}\left(c_{i}, T_{i}\right), T_{i}\right): i \in d\right\rangle \exists\left\langle b_{i} \in B_{i}: i \in d\right\rangle$ $\left(\operatorname{dom}\left(c_{0}\right) \in n \rightarrow f(\vec{b})=0\right)$.
Lemma 3. For each $m \in \omega, d \in \omega \backslash 1$ and cofinal subset C of set $\underset{i \in d}{\otimes} T_{i}$, there exists $p=p\left(m, \underset{i \in d}{\otimes} T_{i}, C\right) \in \omega \backslash m$, such that:

$$
\forall f: \underset{i \in d}{\otimes} T_{i} \rightarrow 2\left(\forall n \in n \in \omega \Phi(n, C, f) \rightarrow \forall n \geq p \exists\left\langle A_{i} \subseteq T_{i}(n): i \in d\right\rangle\right.
$$

$$
\left.\left(\forall i \in d\left(A_{i} \text { is an } m \text {-dense set in the tree } T_{i}\right) \& f^{\prime \prime} \prod_{i \in d} A_{i}=1\right)\right)
$$

Proof. Let us suppose that the statement is not true for $m_{0} \in \omega, d_{0} \in \omega \backslash 1$ and a cofinal subset C_{0} of set $\underset{i \in d_{0}}{\otimes} T_{i}$. That means that there exists a strongly increasing function g from ω into $\omega \backslash 1$ and function $f_{g(p)}:{ }_{i \in d_{0}} T_{i} \rightarrow 2$, for each $p \geq m_{0}$, such that:

$$
\begin{aligned}
& \Phi\left(g(p), C_{0}, f_{g(p)}\right) ; \\
& \forall\left\langle A_{i} \subseteq T_{i}(g(p)): i \in d\right\rangle\left(\forall i \in d \left(A_{i} \text { is a } m_{0}\right.\right. \text {-dense set in the tree } \\
& \left.\left.T_{i}\right) \rightarrow f^{\prime \prime} \prod_{i \in d_{0}} A_{i} \neq 1\right)
\end{aligned}
$$

Let $A=\left(m_{0}+1\right) \cup\left\{n: \exists k \in \omega \backslash 1\left(n=g^{k}\left(m_{0}\right)\right)\right\}$. Function $f: \underset{i \in d_{0}}{\otimes} T_{i} \rightarrow 2$ may be defined as follows. For $n \in m_{0}+1$ and $\vec{t} \in \prod_{i \in d_{0}} T_{i}(n)$ we determine $f(\vec{t})=1$,
and for $n \in A \backslash\left(m_{0}+1\right)$ and $\vec{t} \in \prod_{i \in d_{0}} T_{i}(n)$ we determine $f(\vec{t})=f_{n}(\vec{t})$. Then there exists $\vec{t} \in \underset{i \in d_{0}}{\otimes_{i}} T_{i}$ such that:
$\forall n \in A \exists m \in A \backslash n \exists\left\langle B_{i} \subseteq T_{i}\left[t_{i}\right](m): i \in d_{0}\right\rangle\left(\forall i \in d_{0}\left(B_{i}\right.\right.$ is a n-dense set in the tree $\left.\left.T_{i}\left[t_{i}\right]\right) \& f^{\prime \prime} \prod_{i \in d_{0}} B_{i}=\{1\}\right)$.
Hence, there exist $\vec{c} \in C_{0}, n \in A \backslash\left(\operatorname{dom}\left(c_{0}\right)+1\right)$ and $\left\langle B_{i} \in \operatorname{proj}\left(n, \operatorname{IS}\left(c_{i}, T_{i}\right), T_{i}\right)\right.$: $\left.i \in d_{0}\right\rangle$ such that:

$$
\begin{gather*}
\vec{t} \leq \vec{c} ; \\
f^{\prime \prime} \prod_{i \in d_{0}} B_{i}=\{1\} . \tag{14}
\end{gather*}
$$

Condition (14) is contradictory to the definition of function $f . \square$
Lemma 4. Let us suppose that $\left|\underset{i \in \omega}{\otimes} T_{i}\right|=\omega$ and that $f: \underset{i \in \omega}{\otimes} T_{i} \rightarrow 2$. Then three possibilities exist:
$\forall m \in \omega \exists n \in \omega \backslash m \exists\left\langle A_{i} \subseteq T_{i}(n): i \in \omega\right\rangle\left(\forall i \leq m\left(A_{i}\right.\right.$ is a m-dense set in the tree $\left.\left.T_{i}\right) \& \forall i>m\left(\left|A_{i}\right|=1\right) \& f^{\prime \prime} \prod_{i \in \omega} A_{i}=1\right)$;
$\exists \vec{t} \in \underset{i \in \omega}{\otimes} T_{i} \forall \vec{s} \in \underset{i \in \omega}{\otimes} T_{i}(\vec{t} \leq \vec{s} \rightarrow f(\vec{s})=0) ;$
$\exists d \exists \vec{t} \exists \vec{S} \exists A\left(d \in \omega \backslash 1 \& \vec{t} \in \prod_{i \in \omega} T_{i} \& \forall i \in d\left(\left|t_{0}\right|=\left|t_{i}\right|\right) \& \forall i \in d\left(S_{i}\right.\right.$ is a downwards closed ω-subtree of the tree T_{i} with $g_{i}\left(\left|t_{i}\right|\right)$ branches, which includes the set $\left.\operatorname{IS}\left(t_{i}, T_{i}\right)\right) \& \forall i \geq d\left(S_{i}\right.$ is a downwards closed ω-subtree of the tree $\left.T_{i}\left[t_{i}\right]\right) A \in[\omega]^{\omega} \& \bar{f}^{\prime \prime} \prod_{i \in \omega} S_{i}\left(\left|t_{0}\right|\right)=\{1\} \& \forall B \forall\left\langle s_{i}\right.$:
$i \geq d\rangle \forall\left\langle R_{i}: i \geq d\right\rangle \exists\left\langle r_{i}: i \geq d\right\rangle\left(B \in[A]^{\omega} \& \vec{s} \in{ }_{i>d}{ }^{B} S_{i} \& \forall i \geq d\left(R_{i}\right.\right.$ is a downwards closed ω-subtree of the tree $\left.\left.S_{i}\left[s_{i}\right]\right) \& \&_{n} \cup_{n \in B} R_{i}(n): i \geq d\right\rangle \in$ $\operatorname{Str}^{\omega}\left(\left\langle_{n \in A}^{\cup} S_{i}\left[s_{i}\right](n): i \geq d\right\rangle\right) \rightarrow \vec{r} \in{ }_{i \geq d} \otimes^{B} R_{i} \& f^{\prime \prime} \prod_{i<d} S_{i}\left(\left|r_{d}\right|\right) \times \prod_{i \geq d}\left\{r_{i}\right\}=$ $\{1\})$).
Proof. Let us assume that neither (15) nor (16) are true. Let m be the smallest natural number for which condition (15) fails. Let us have $d=m+1$, though d can be any natural number $\geq m+1$. It can clearly be seen that $C \subseteq \underset{i \in d}{\otimes} T_{i}$ and $\left\langle B_{i} \subseteq T_{i}: i \geq d\right\rangle$ exist and they fulfil the following conditions:
C is a cofinal subset of the set $\underset{i \in d}{\otimes} T_{i}$;
$\forall i \geq d\left(B_{i}\right.$ is a maximal branch in the tree $\left.T_{i}\right) ;$
$\forall \vec{c} \in C\left(f^{\prime \prime} \prod_{i \in d}\left\{c_{i}\right\} \times \prod_{i \leq d} B_{i}\left(\left|c_{0}\right|\right)=\{1\}\right)$.
Let $p=p\left(m, \underset{i \in d}{\otimes} T_{i}, C\right)$ be a natural number whose existence has been established in Lemma 3.

Without loss of generality, we may suppose that: $\forall i \geq d\left(\left|T_{i}(p)\right|=1\right)$.

Namely, if for any $i \geq d\left|T_{i}(p)\right|>1$, then we choose an arbitrary $t_{i} \in T_{i}(p)$ and change tree T_{i} into tree $T_{i}\left[t_{i}\right]$.

For each $\vec{c} \in C \cap \underset{i \in d}{Q^{p}} T_{i}$ and each $\vec{A}=\left\langle A_{i} \in \operatorname{proj}\left(p, \operatorname{IS}\left(c_{i}, T_{i}\right), T_{i}\right): i \in d\right\rangle$ we may choose one $\vec{S}=\left\langle S_{i}: i \in d\right\rangle$ for which the following holds:
$\forall i \in d\left(S_{i}\right.$ is a downwards closed ω-subtree of the tree T_{i} with $\left|A_{i}\right|$ branches and includes the set A_{i}).
Let $\left\langle\vec{S}_{k}: 1 \leq k \leq l\right\rangle$ be the enumeration of all the above mentioned \vec{S}. Let us suppose that $q \leq l$ is the bigest natural number for which sequences $\left\langle A_{i}: i \leq\right.$ $q\rangle,\left\langle t_{i}: i \leq q\right\rangle$ and $\left\langle\vec{S}_{i}: i \leq q\right\rangle$ exist with the following properties:

$$
\begin{aligned}
& A_{0}=\omega ; \\
& \vec{t}_{0}=\left\langle\operatorname{root}\left(T_{i}\right): i \geq d\right\rangle ; \\
& \vec{S}_{0}=\left\langle T_{i}: i \geq d\right\rangle ; \\
& \forall i \leq q\left(A_{i} \in[\omega]^{\omega}\right) ; \\
& \forall i<q\left(A_{i+1} \subseteq A_{i}\right) ; \\
& \forall i \leq q\left(\vec{t}_{i} \in \prod_{j \geq d} \cup{ }_{n} \in A_{i}\right. \\
& \left.S_{i j}(n)\right) ; \\
& \forall i \leq q\left(\vec{S}_{i}=\left\langle S_{i j}: j \geq d\right\rangle\right) ; \\
& \forall i<q \forall j \geq d\left(S_{i+1, j} \text { is a downwards closed } \omega \text {-subtree of the tree } S_{i j}\right) ; \\
& \forall i<q\left(\left\langle\cup_{n \in A_{i+1}}^{\cup} S_{i+1, j}(n): j \geq d\right\rangle\right) \in \operatorname{Str}^{\omega}\left(\left\langle_{n \in A_{i}}^{\cup} S_{i j}\left[t_{i+1, j}\right](n): j \geq d\right\rangle\right) ; \\
& \forall i \leq q \forall n \in A_{i} \forall \vec{s}^{\prime \prime} \in \prod_{j \geq d} S_{i j}(n) \exists \vec{s}^{\prime} \in \prod_{j<d} S_{i j}(n)\left(f\left(\vec{s}^{\prime \wedge} \vec{s}^{\prime \prime}\right)=0\right) .
\end{aligned}
$$

On the basis of the previous lemma $q<l$. Now, we may choose:

$$
\begin{aligned}
& \vec{t}=\vec{t}_{q-1} \\
& \left\langle S_{i}: i \in d\right\rangle=\left\langle S_{q i}: i \in d\right\rangle \\
& \left\langle S_{i}: i \geq d\right\rangle=\left\langle S_{q-1, i}: i \geq d\right\rangle \\
& A=A_{q-1}
\end{aligned}
$$

d, \vec{t}, \vec{S} and A chosen in this way fulfil condition (17).
Lemma 5. Let us assume that $\left|\underset{i \in \omega}{\otimes} T_{i}\right|=\omega, f: \underset{i \in \omega}{\otimes} T_{i} \rightarrow 2, \omega=\underset{n \in \omega}{\cup} E_{n}$ is partitioning of set ω into countable many infinite partitions and g is strongly increasing function from ω into $\omega \backslash 1$. Then (15) or (16) hold or
$\exists \vec{t} \in \prod_{i \in \omega} T_{i} \exists\left\langle S_{i} \subseteq T_{i}: i \in \omega\right\rangle \exists A \in[\omega]^{\omega} \quad\left(\forall i \in \omega\left(S_{i}\right.\right.$ is a downwards
closed ω-subtree of the tree T_{i} with $\left|\operatorname{IS}\left(t_{i}, T_{i}\right)\right|$ branches, which includes the set $\left.\operatorname{IS}\left(t_{i}, T_{i}\right)\right) \& A=\left\{\left|t_{i}\right|: i \in \omega\right\} \& \forall n \in \omega \forall j \in g(n) \exists i \in E_{j}\left(\left|t_{i}\right|\right.$ is the n-th member of the set $\left.A) \&{f^{\prime \prime}}_{\substack{\otimes \\ \otimes_{i}}}^{A} S_{i}=\{1\}\right)$.
Proof. Let us assume that neither (15) nor (16) hold for function f. We shall initiate an inductive procedure now. Let us denote function f with f_{0}. (17) is
applicable to function f_{0}. We may choose $d_{1}=d$ such that $\forall j \in g(0) \exists i \in E_{j}(i \in$ d_{1}). We then define function $f_{1}: \otimes_{i}{ }^{A_{1}} T_{1 i} \rightarrow 2$, where A_{1} and $\left\langle T_{1 i}: i \geq d_{1}\right\rangle$ are set A and sequence $\left\langle S_{i}: i \geq d\right\rangle$ in (17) respectively, in the following way:

$$
\forall n \in A_{1} \forall \vec{s} \in \prod_{i \geq d_{1}} T_{1 i}(n)\left(f_{1}(\vec{s})=1 \leftrightarrow f_{0}^{\prime \prime} \prod_{i \in d_{1}} S_{i}(n) \times \prod_{i \geq d_{1}}\left\{s_{i}\right\}=\{1\}\right)
$$

Neither (15) nor (16) hold for function f_{1}, thus it is (17) which is applicable. Hence, a step analogous to the one we applied in case of function f_{0} may be repeated with function f_{1} as well. Generally speaking, the transfer for $n \in \omega$ from function f_{n} to function f_{n+1} is performed in a way which is analogous to the transfer from function f_{0} to function f_{1}. In the final stage of the inductive procedure it becomes obvious that the assertion is right.
Corollary. Under the conditions of the Lemma 5 the following holds:

$$
\begin{aligned}
& \exists k \in 2 \exists \vec{t} \in \prod_{i \in \omega} T_{i} \exists\left\langle S_{i} \subseteq T_{i}: i \in \omega\right\rangle \exists A \in[\omega]^{\omega} \quad\left(\forall i \in \omega \left(S_{i}\right.\right. \text { is } \\
& \text { a downwards closed } \omega \text {-subtree of the tree } T_{i} \text { with }\left|\operatorname{IS}\left(t_{i}, T_{i}\right)\right| \text { branches } \\
& \text { which includes the set } \left.\operatorname{IS}\left(t_{i}, T_{i}\right)\right) \& A=\left\{\left|t_{i}\right|: i \in \omega\right\} \& \forall n \in \omega \forall j \in \\
& \left.g(n) \exists i \in E_{j}\left(\left|t_{i}\right| \text { is the } n \text {-th member of the set } A\right) \& f^{\prime \prime} \otimes_{i \in \omega}^{A} S_{i}=\{k\}\right) .
\end{aligned}
$$

Now, we can apply the corollary to function h defined in (13). Without loss of generality, we can assume that $\left|\begin{array}{ccc}i \in \omega & j \in \omega \\ i \in \omega\end{array} T_{i j}^{\prime \prime}\right|=\omega$. Namely, it may be possible to choose $\vec{t} \in \prod_{i \in \omega} \prod_{j \in \omega} T_{i j}^{\prime \prime}$ so that $\left|\underset{i \in \omega j \in \omega}{\otimes} T_{i j}^{\prime \prime}\left[t_{i j}\right]\right|=\omega$. Then we define set $E_{i}=\{\langle i, j\rangle: j \in \omega\}$ for each $i \in \omega$. In case we manage to define the increasing function g from ω into $\omega \backslash 1$ adequately, the corollary may be applied to function h, and then (12) and (9) which prove the statement.

REFERENCES

1. R. Laver: Products of infinitely many perfect trees. J. London Math. Soc., 29 (2) (1984).
2. K. Milliken: A Ramsey theorem for trees. J. Com. Th. A, 26 (1979).

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification: 04A20

