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A GENERALIZATION OF THE KY FAN
INEQUALITY

Zhen Wang, Ji Chen, Guang—Xing Lt

Dedicated to the memory of Professor Dragoslav S. Mitrinovié

A certain extension of the Ky Fan inequality is proved by means of elementary

calculus.

1. INTRODUCTION

The following inequality due to Ky FAN was recorded in [1]:

n 1/n n
[Tz > Ti
(1) — <= (0< e < 1/2),
(1 — ) (1— )
i=1 i=1
unless 1 = 2 = ... = 2.

With the notation

1/n
xl) ’

M, (2) = (%éxﬂ’)up (2> 0) and Mo (2) = lim M, (2) = (

=

(1) becomes

Mo(l‘) Ml(l‘)
@) Mo(l—2) S M(l—a)

D. SEGAIMAN [2] conjectured that

Mp@) Mq@)
(3) My(l—2) = My(1—2)

(r<gq).

F. CuaN, D. GOLDBERG and S. GONEK [2] gave some counter examples
when 0 < 27 /p < 29/q or p+ q > 9. In addition, they proved that (3) is true for
p+qg=0>por0<p<1<g<2

Recently the case p = —1 and ¢ = 0 was proved to be true by WaN—-LaN
WaNG and PENG-FEI WANG [3]. And the case —1 < p < 0 < 1 was proved
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by GuaNGg-XING L1 and J1 CHEN [4]. ZHEN WAaANG and J1 CHEN [5] proved
that the function R(p) = M,(x)/M,(1 — «) is strictly increasing on [—1, 1], unless
1 = ...= xy, and if (3) holds for (p, ¢), then also for (—¢, —p).

In this paper, we determine all exponents p and ¢ such that (3) is true.
Theorem. For arbitrary n, p < q, the inequality

n 1/p n 1/q
>owil >
(4) S < | (0 <& <1/2)
> (L—ay)P 2o (L—ay)e
i=1 i=1

holds if and only tf |p+q| <3, 27 /p > 29/q when p > 0, p2P < ¢29 when q < 0.

The proof of the sufficiency is contained in Sections 3, 4 and 5. In the proof
we assume pq 7 0, otherwise by letting p or ¢ — 0, it is easy to see that (4) is also
true. In Section 2, we will prove the necessity.

2. PROOF OF THE NECESSITY

In [2], it is proved that (4) and p < ¢ are equivalent when n = 2, and that if
(4) holds, then 27 /p > 22/¢ for p > 0.

When ¢ < 0, take 21 =29 = - = 2p_1 = ¢ (0 <e<1/2) and z,, = 1/2.
Then (4) becomes

(n—1)eP + (1/2)7  \'/* (n—1)e? + (1/2)7  \'*
©) (<n—1><1—e>p+<1/2>p) S<<n—1><1—e>q+<1/2>q) ’

or
1/p 1/p
(4 wi) (=9 + )
(6) < -
a1 VT (e )
T € 29 (n—1)
Letting ¢ — 0, (6) yields
1/p
14+ 2;
P(n—1)
@ < : )w ,
(1 + —2q(n—1))
hence
g . 1 1/p . 1 1/q
®) Yon-n) \Tuw-on)

By using the MACLAURIN expansion in 1/n; we obtain

(9) L (p2Pm)~ 4 o(1/n?) > L+ (g27n)~ + o(1/n?).
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So if p2P > ¢ 22, (4) would be false for sufficiently large n.
In the equivalent inequality of (4):

n 1/p n 1/q
Z(l—ui)i’ Z(l—ui)q
(10) | <|F— (0 < u; < 1),
ST B T
let g =us =+ =up_1 =0 and 4, = u (0 < u < 1), then (10) becomes
(=D +(1=w\"" =D+ (1w
) ((n—l)—l-(l—l—u)i’) S((71—1)-1-(1-|-u)<1) '

Take the MACLAURIN expansion of (11) in u:

2 2 5, (n=1)((n—-2)p*=3np)+2(n* +2)

_Z 22 3 4
(12) 1 nu—l—n2u e u” + o(u”)
2 2 -1 —2)¢%2 -3 2(n? 42
SO DR (n = 1)((n = 2)q ng) +2(n* + )u3+0(u4).
= n n? 3n3

Thus for u sufficiently small, (10) holds only if

(13) (n —2)p* — 3np > (n — 2)¢* — 3ng,
or
(1) (p=a)((n = 2)(p+q) = 3n) > 0.
So for n > 3, we have

3n
(15) Pres—— .

Letting n — 400, (15) yields p+ ¢ < 3.
Similarly, the expansion of (10) with u; =us =+ - = up_1 = u (0 < u < 1),
up, = 0 gives
—3n
1 > —.
(16) p+q2> n_9
So we obtain p+4 ¢ > —3.

3. AN EQUIVALENCE PROPOSITION

In this section, we are to establish an equivalence proposition as follows:
Proposition. For p < q, the following inequalities are equivalent:

n 1/p n 1/q
Z/\Z'l‘ip Z/\Zl‘lq
(1) i=1 < i=1 ’

Z/\Z'(l—l‘i)p Z/\z(l_xz)q
i=1 i=1
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where A\; >0, 0 < 2; <1/2,i=1,2,...,n and 1,22, ..., 2, are not all equal,

(i) ( Az + py? )Up < ( Azt + py? )”q
XTI —2) + u(L =y Ni—2itai-ni)
where A, p >0, 0 < & #y < 1/2;
i) At (1 —u)p\ M7 (A0 L4
A+ (14 )P At (14 u)e ’

where A >0, 0 < u < 1.
Proof. (i) obviously implies (iii).

Now suppose (iii) is true, let # > y and y/& = 1 — u, /(1 — z) = k, then
O<u<]l, 0<k<Tland (1 —y)/(1 —2) =14 ku. So (ii) is equivalent to the
following:

(17) f(k'):lln Atpl—w? 1 A+ p(l—w)P

- — > 0.
¢ A u(ku)T T p X F a1t ku)r

Differentiating f(k), one can obtain
C —p(l k)T e p(1+ ku)P

!
k) =
J(k) A4 p(l4+ku)? A+ p(l+ ku)P
(18)
o u(l + ku)? (1 + ku)? <0
ol ku \ A+ p(l+ku)e N+ (1 + ku)e '
Hence

1 A+ (1—=—u)? 1 A4+(1l—u)
(19) f(k)Zf(l)—glﬂm P AT Ty
(i1) is established.
We will use induction to show that (i) is true if (ii) holds. At first, (ii) is the
case n = 2 of (i). Now assume that (i) holds for some n (n > 2).
Let 1/2 > @1 > @9 > -+ > ®y41, and a; are not all equal, then there exists
w>0and v =X A,q1/p > 0 such that

n+1
/\Z'l‘ip
(20) Z; — /,L]jlp —|— An_l_l]jg_l_l
HZ-I—:lA(l_x)p /‘L(l_xl)p—i—An_I_l(l—xn_l_l)p
i=1

_ All‘lp —|— I/l‘f;_l_l _ Rp.
Al(l — l‘l)p + V(l - xn+1)p

Tt is clear that (A; — p)(Ap41 — v) < 0. Without loss of generality, we may assume
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that A; > u. So

(A — p)ai? + ankm”
(21) R = =2 :
(Ar =) (L= 21)? + 3 Ai(l — )P

1=2

By the assumption, we have

n 1/p
(AL — e + 50 Aiwd®
(22)  R=
A=) (L= 20)P + oAl — )P
1=2 1/q

(A — )94 > Na?
=2

S n
A=) (1= 20)7 + 5 Ai(1 = 2)9

1=2

oy e (gt Y
p(l—=z1)P + Anp1(1 = 2pg1)p

< ( ux1q+/\n+1x,?+1 )1/(1.
1( )q

1—21)0 4 App1 (1 — 2pgq

So we have

n+1 1/q
Z /\il‘iq
i=1

(24) R< |

Z; /\2(1 — l‘i)q

Therefore, we get that (i) is true for arbitrary n and the proposition is established.

4. THREE LEMMAS
Lemma l. Ifa<0,a< f<1—-a, 0<u<]1, then
(25) I+uw)* +(1-w)*> (1 +u)f +(1-u)f.

The equality is attained if and only if u =0 or (o, §) = (0, 1).
Proof. Let p(z) = (1 +u)” + (1 —w)® (0 < wu < 1), then

(26) () = (14 )" (In (1+w) (1= w)"(In (1= w)” >0,
So we have to establish (25) only for 5 =1— a, i.e.

(27) Pu)y=(1+u)*+(1-uw)*— (L+w)'"*+(1-u)'"%) >0,
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where a < 0, 0 < u < 1.

(28)  ®(u) = 2:23 ((26:1) - (12_na)) w2

Iy /-1 In—1
=2a(a—1) (Qn)!<]_[(a—k)— H(—a—k—l—l))

TLZ::Z k=2 k=2
1T00  on son—1 In—1
u
> 2a(a—1 a—k)— —a—k—i—l)
2 2 )HZ::Z (2n)! (kl;lz ( ) kl;lz | |

> 0.

This proves the lemma.
Lemma 2. If0<a<f<l—aand0<u<l1. Let

(29) Glu)=(1+u)*+ (1 —u)*— (1 +u)? — (1 —u)?,

then there exists an unique uqg, such that
(i) G(u) >0 for 0 < u < ug;
(i) G(u) <0 for ug < u<1.
Proof. We have 5(8 — 1) < a(ar — 1) < 0, hence

ala—1

(30) 0<6(6—1)

<1

Define

(31) g(u) = Hu s (0<u<),

We have

(B—2)((1+u)~% — (1 —u)?7%)

(32) gl(u) = (1 4 U)O‘_z 4 (1 . U)O‘_z

(@ —2) (14 w)*=3 — (1 —w)>=) (1 +0)P~2 4 (1 — w)?~2)
(1 +u)o=2 4 (1 — w)-2)

((1 + u)oc—za_i__(Ql . u)a_z)z (((1 + U)ﬁ—?’ — (1 - u)r@—?)) X

X ((1 +u)* 4 (1 — u)o‘_z)
~((14 w7 = (L= w)* ) (14 w2 + (1 - w)"72))

- ()T () )

<
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So g(u) is strictly decreasing with g(0) = 1 and ¢(1) = 0. Hence there exists a
unique u; € (0, 1) such that

1
(33) g(u1) = A=)
Note that

(34) G =a((l+uw)* = (1 =u)*) = B((1+u)77 = (1= u)’7h),

)60 === (40 (10 (00 - 55

and from above we know that G”(u) > 0 for u € (0, uy), G"(u) < 0 for u € (ug,1).
Because G(0) = 0 and G(1) = 2% — 2% < 0, we can find a unique ug € (uy, 1)

such that G(u) > 0in (0, ug), G(u) < 0 in (up, 1).

Lemma 3. Ifp<gq, p+q <3 and 2! /p > 2%/q for p > 0, then

(I4+u)f — (1 —w)? S (I+u)?—(1—wu)

(36) ’ .

(0<u<),

equality occurs if and only if u =0 or (p,q) = (1,2).

Proof. Let

(37) H(u) = (I4+uwf —(1-uwf (A+u)?—(1—u) 0<u<l).
p q

Then

(38)  H'(uw)= (14w + (1= = (L+uw) "+ (1-w)?h).

When p<1,p—1<q¢—1<1—(p—1), by Lemma 1 we obtain H'(u) > 0.
Thus H(u) > H(0) = 0 with equality if and only if w =0 or (p,¢) = (1, 2).

When p > 1, since the function h(r) = 2" /r strictly increases in (0,1n 2] and
strictly decreases [1/1n2,+o0), and

(39) h(1) = h(2),  hip) > h(g)  (p>1),

we have p+¢<142=3,ie0<p—-1<g¢g—1<1—(p—1). By Lemma 2, H'(u)
has it’s unique zero point ug in (0, 1), such that the following is true:

H'(u) >0 for 0< u< ug, hence H(u) > H(0) = 0;

H'(u) <0 for ug<u<1, hence H(u) > H(1) =2°/p—22/q > 0;
and H(ug) > 0.

These establish the lemma.
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5. PROOF OF THE SUFFICIENCY

From the equivalence proposition in Section 3, we only need to prove the
following inequality:

where A >0, 0 <u <1, p<gq, [p+q| <3, 2°/p>2?/g when p > 0, p2P < q2¢
when ¢ < 0.
The above inequality is equivalent to

1 A+(1—wi 1, A+(1—upr

41 F\)\=-In— 2 " Ipn ——— 7~
) M= e T " rap
But
_1 1 1 1 1 1
(42) F/(/\) —q (A-I—(l—u)q - >\+(1+u)‘1) T ()\+(1—u)1’ - >\+(1+u)1’)

= (AN + BA+C)/Q(N),

43) QN =Q4+0-w))A+1+u)) A+ 1 —uwf)A+ (L+u)),

(44) P ) e e O () e VS
q » :

") (14 u)?— (1 —u)?

(45) B= (L) + (1= :

~ (1 (1= ) S

(46) C = (1 _ uz)p+q ((1 + u)—q — (1 — u)—q _ (1 + u)—p — (1 — u)—p) )

—q —-p
By Lemma 3, when (p,q) # (1,2) and (p,q) # (—2,—1), we have A < 0 and
C > 0.1If (p,q) = (1,2), then A =0, B = —4u® < 0, C = 2u*(1 —v?) > 0. If
(p,q) = (=2,-1), then A = —2u3/(1 —u?)? < 0, B =4u3/(1 —u?)3 > 0,C = 0.
Thus for all these cases, F'(A) has an unique positive root Ag such that F/(A) > 0
for 0 < A < Ag; FY(A < 0 for A > Ag. So

(47) F(A) > F(0) = F(+00) =0 for A> 0.

Now the theorem is proved.



A generalization of the Ky Fan inequality 17

6. A CONJECTURE

Inequality (4) holds for all natural numbers n, and it is not the best result
for each fixed n. We propose a conjecture for this condition as follows:

Conjecture. If p < q, [p+4q| <3n/(n—2), n >3,

(48) (L+27/(n— )P > (1+27/(n — 1) when p> 0,
and
(49) 1+ 1/ — 1)) > (1+1/2%n - 1)))"? when ¢ <0,
then n 1/p n 1/q
Zl‘ip Z$iq

(50) | <| = (0 < <1/2),

L1 =)y L1 — i)t
unless x1 = x5 = - = x,,.
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