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ON THE LOGARITHMIC CONCAVITY OF

(r � 1)�(r)

Paul Bracken, Murray S. Klamkin

Dedicated to the memory of Professor Dragoslav S. Mitrinovi�c

Inequality (1) is proved.

In this note we show that the sequence f(r�1)�(r)g; r = 1; 2; : : :; where �(r)

is the zeta function
+1P
k=1

1=kr; is logarithmically concave, i.e.,

(1) r2=(r2 � 1) > �(r)�(r + 2)=(�(r + 1))2:

This result arose in generalizing an inequality of the �rst author which ap-
peared recently as a proposed problem [1].

For the proof we use upper and lower bounds for �(r) as abtained by use of
the Maclaurin integral test applied to the function h(x) = 1=xr: Since h(x) is
strictly decreasing on [1;+1); the following inequalities hold:
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Using the latter bounds, we �rst show that (1) is valid for r � 7: It su�cies
to establish the stronger inequality
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or equivalently that

2r � 2(r2 � r � 1)�
r2 � 1

2
�

r2 � 2

2r
> 0

and which holds for r � 7: The causes for r = 2; 3; 4; 5; 6 folow by numerical
evaluation using the known values of �(r) for these values.

It will be shown in a subsequent note that function (r� 1)�(r) is logarithmi-
cally concave for all r � 2 and that the function

((r)�(r + 1))2 � ((r � 1)�(r))((r + 1)�(r + 2))

is increasing in r and has limit 1 as r ! +1:
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