Univ. Beograd. Publ. Elektrotehn. Fak.
Ser. Mat. 6 (1995), 49-50

TWO INEQUALITIES

A. M. Fink

Dedicated to the memory of Professor Dragoslav S. Mitrinović

Inequalities (2) and (4) are proved.

An inequality that appear in Mitrinović [1, p. 247] is

$$
\begin{equation*}
\frac{3 x}{2+\sqrt{1-x^{2}}} \leq \sin ^{-1} x, \quad 0 \leq x \leq 1 \tag{1}
\end{equation*}
$$

This is best possible at $x=0$ but not at 1 . It occurred to me to see if there is a corresponding upper bound for $\sin ^{-1} x$. Indeed there is,

$$
\begin{equation*}
\sin ^{-1} x \leq \frac{\pi x}{2+\sqrt{1-x^{2}}}, \quad 0 \leq x \leq 1 \tag{2}
\end{equation*}
$$

and equality holds at both ends of the interval. We give a proof of both inequalities. Let $f_{a}(x)=\frac{a x}{2+\sqrt{1-x^{2}}}=\sin ^{-1} x, 3 \leq a \leq \pi, 0 \leq x \leq 1$. Note that $f_{a}(0)=0$ and $f_{a}(1)=\frac{a-\pi}{2} \leq 0$ with $f_{\pi}(1)=0$. Then

$$
\begin{equation*}
f_{a}^{\prime}(x)=\left(\sqrt{1-x^{2}}\left(2+\sqrt{1-x^{2}}\right)^{2}\right)^{-1}\left((2 a-4) \sqrt{1-x^{2}}+a-5+x^{2}\right) \tag{3}
\end{equation*}
$$

Call the second bracket $g_{a}(x) \equiv(2 a-4) \sqrt{1-x^{2}}+a-5+x^{2}$ then $g_{a}^{\prime}(a)=$ $\frac{2 x}{\sqrt{1-x^{2}}}\left(\sqrt{1-x^{2}}-(a-2)\right) \neq 0$ on $(0,1)$. So g is monotone decreasing. For $a=$ $3, g_{3}(0)=0$ so $g_{3}(x) \leq 0$ and $f_{3}^{\prime}(2) \leq 0$ as required to prove (1). For $a=\pi, g_{\pi}(x)$ has one zero and so $f_{\pi}(x)$ is unimodal with $f_{\pi}^{\prime}(0)>0$ and $f_{\pi}(0)=f_{\pi}(1)=0$. This proves (2).

[^0]Our second inequality concerns \log convex functions. If $f>0$ and $\log f$ is convex on \mathbf{R} then

$$
\begin{equation*}
\frac{\pi}{4} \int_{-1}^{1} f(x+v t) \cos \frac{\pi t}{2} \mathrm{~d} t \leq \frac{f(x+v)+f(x-v)}{2}, \quad x, v \in \mathbf{R} . \tag{4}
\end{equation*}
$$

The proof is to write

$$
f(x+t v) \leq f(x+v)^{\frac{1+t}{2}} f(x-v)^{\frac{1-t}{2}}, \quad-1 \leq t \leq 1 .
$$

Let $B=\frac{1}{2} \log \frac{f(x+v)}{f(x-v)}$, then

$$
\begin{aligned}
& \frac{\pi}{4} \int_{-1}^{1} f(x+v t) \cos \frac{\pi t}{2} \mathrm{~d} t \leq(f(x+v) f(x-v))^{1 / 2} \frac{\pi}{4} \int_{-1}^{1} \cos \frac{\pi t}{2} e^{B t} \mathrm{~d} t \\
& \quad=\frac{\pi^{2}}{8} \frac{e^{B}+e^{-B}}{B^{2}+\frac{\pi^{2}}{4}}(f(x+v) f(x-v))^{1 / 2}=\frac{\frac{\pi^{2}}{4}}{B^{2}+\frac{\pi^{2}}{4}} \frac{f(x+v) f(x-v)}{2}
\end{aligned}
$$

Equality holds in this argument if $f(x)$ is linear. In any case, (4) follows. Equality holds in (4) if f is a costant.

Moreover, if f is \log concave we have

$$
\frac{\pi}{4} \int_{-1}^{1} f(x+v t) \cos \frac{\pi t}{2} \mathrm{~d} t \geq \frac{f(x+v)+f(x-v)}{2}\left(\frac{\frac{\pi^{2}}{4}}{\frac{\pi^{2}}{4}+\frac{1}{4} \log ^{2} \frac{f(x+v)}{f(x-v)}}\right)
$$

REFERENCES

1. D. S. Mitrinović: Analytic inequalities. Springer-Verlag, 1970.

Department of Mathematics,

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification: 26D05

