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SOME NEW INEQUALITIES FOR GRAM

DETERMINANTS IN INNER PRODUCT
SPACES

S. S. Dragomir', B. Mond

Dedicated to the memory of Professor Dragoslav S. Mitrinovié

Some new inequalities are given for Gramians which complement the result
from the recent book on the theory of inequalities due to Mitrinovié, Pedarié

and Fink.

1. INTRODUCTION

Let (H;(-,)) be an inner product space over the real or complex num-
ber field K and {#1,...,2,} a system of vectors in H. Consider the GRAM ma-
trix G(x1, ..., 2n) = [(, xj)]i,jzl,_n and the Gram determinant T'(z1,...,2,) =
det Gz, ..., 2n).

The following inequality is well known in the literature as GRAM’s inequality

(see [4, p. 395])

(1.1) T(zy,...,24) > 0.

The equality holds in (1.1) iff the system of vectors {1,...,#,} is linearly depen-
dent in H.

A well known converse of this inequality is the following:

(1.2) D(xy, .. e) < [ lall® forall w; € H (i =T,n)

i=1
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known as HADAMARD’s inequality. Note that the equality in (1.2) holds if and only
if (x5, 25) = dij|s| ||z;]] for all 4,5 € {1,...,n} (see [3] and [4], p. 59T]).
Other special inequalities which involve GRAM’s determinant are [4, p. 597]:

T(zy,...,2n) _ T(ze,...,24)
1.3 < <...<T Ca),
(1.3) T(zy,...,25) = T(za,...,2x) = = (@e41,-- 0 @)
(1.4) T(zy,...,20) <T(x1,...,25) T(®kg1, -\ 20n)
and

(1.5) T(z1 4+ 41, 20,.. .,xn)l/z < T(xy, 29, ..., xn)l/z + T(y1, 2o, .. .,xn)l/z.

In what follows we use the next known lemma.

Lemma 1.1. Let (H;(-,-)) be an inner product space and {e1,...,ep} a system
of linearly independent vectors in H. Put H, := Splei,...,e,} the linear space
spaned by {e1,...,en}. Then we have the representation:

T(u,e1,...,€en)
1.6 d*(u, Hy) = ————21=22
(1.6) (u, Hn) Tler,...,en)

In this paper we point out some new inequalities for Gramians closely con-
nected with those in (1.2)-(1.4). Note that these results complement in a natural
way Chapter XX of the recent book due to D. S. MITRINOVIC, J. E. PECARIC
and A. M. FInk [4].

2. RESULTS

Let (H;(-,-)) be an inner product space over the real or complex number field
K. The following inequality is well known in the literature as SCHWARZ’s inequality

(2.1) l2Plll* > [(x,y)|* for all 2,y € H.

Note that the equality holds in (2.1) if and only if there exists a constant A € K so
that # = Ay or y = 0 or 2 = 0.

The following interesting refinement of (2.1) in terms of Gramians holds.
Theorem 2.1. Let (H(-,-)) be as above and {x1,...,2n} a system of linearly
independent vectors in H. Denote by H,, the lincar subspace spaned by {1, ... x,}.
Then for all x € H and y € H,, one has the inequality:

T(z,21,...,24)

> 2,
L(wy,...,x0) — IS0

(2:2) el P ll* > [(z, »)* + llyll”

Proof. By Lemma 1.1 we have:

Tz, 21,...,2p)

=d? H,) = 1nf — 2?2 < ~yll?
T(r1,...,2n) (, /o) = inf lz —z][" < |z = Ayl



Some new inequalities for Gram determinants ... 41

for all A € K, from which we get:

Tz, 21, .., 20) 9 ~ 20,112
—— 0 — 2Re[A A
Lo ) - 2R [N, ] + AP
for all A € K.
If we choose A = % € K, (y # 0) then we get in the second part of the
Y
above inequality:
]| = 2 1CE2%)] e (2 Ny 4 el (2711
llvI® llvI® |lyl* ’

which proves the first part of (2.2).

The second part is obvious.

If y = 0, (2.2) becomes an equality.
REMARK 2.2. Note that the equality holds simultaneously in (2.2) iff # = Ay with
AeKory=0orz=0.

The following corollary also holds:

Corollary 2.3. Let (H(-,-)) be an inner product space and {x1,... 25} be as
above. Then for all x,z € H and y,u € H,,, one has the equality

@3 el el = L] 2 ol ) 2ol
where
(l‘,z) ($’$1) ($axn)
— (xl’z)
y(x1, .. w02, 2) ¢ Glar, . an)

(#n, 2)

Proof. By the above theorem we have:

[P llglf? = (2, ) > [yl %
and I'( )
2, L1, ..., Ty
APl = V(2P 2l o2
from which we get
(2.4) (el Pl = 1)) (Pl = 102, 0) )

> ||yl ||ul|? F(gﬁaﬂﬁl,[.l;&,xn)l“(z,a;]lz, ceey ) .
Ty, T
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A simple calculations shows us that:

(2.5) (Ll 1= Hall = (2, )11z w)])°
> (L2l = 1 9)17) Wl llll” = 1C2, w)]?).-

It is known that (see [2] or the inequality of KUREPA [4, p. 599] in a particular
case):

(2.6) D(x, @1, .. e0) Tz, 21, .. 20) > (2, ..o 20) (7, 2)] 2

Now, combining the inequalities (2.4), (2.5) and (2.6) we easily derive (2.3).
REMARK 2.4. If we choose in the above inequality # = z and y = u, we recover
the first inequality in (2.2).

The following general refinement of SCHWARZ’s inequality in terms of Grami-
ans also holds:

Theorem 2.5. Let (H;(-,-)) be an inner product space and {x1, ..., z,} a family of
linearly independent vectors in H. Thus for all x,y € H\{0} one has the inequality:

max{I(z),I(y)}

27 el - (e, > BTN
where
! 2 1/2 1/2) 2
I(l‘) = ||l‘||2 (Hxl' [F(y,xl,...,xn)] /2 |(l‘,y)|[r(l‘,l‘1,...,l‘n)] / )
and
1 2 1/2 1722
I(y) = ||y||2 (HyH [F(x’xla"'axn)] /2 _ I(x,y)|[F(y,x1,...,xn)] / ) .

Proof. By the known inequality (1.5) we have:
D@0, el = O, ea)] 2] < Pa= b, 2]
< fla=bll [Ty, ..y 2)]?

for all a,b € H which gives us:
2
(2.8) ([F(a, 1w [D(b 2, . xn)]l/z) <ja— B> T(e1, ..., 2n)

for all (a,b) € H.
(, y)

ll1l?

PP ] e [
P

Choose a =« and b = y. Then a simple calculations shows that:
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and
([F(a, Ty, ..., xn)]l/z —[L(b, 2y, ..., l’ﬂ)]l/z)z

_ ([F(x,xl,...,xn)]l/z— (. y)] [F(y,xl,...,xn)]l/z) .

ll1l?

Now, using the inequality (2.8), we get (2.7) for the mapping I(y). By a similar
argument we can show the second inequality, and the proof of the Theorem is thus
finished.

The following inequality which generalizes the well known triangle inequality
in inner product spaces (see for example [4, p. 598]) holds:

[C(z+y,21,.. ., 20)]"? <Dl 21,...,2)]Y2 + [Ty, 21, ..., 20)]Y2,

where z; € H (i =1,n) and (z,y) € H.
We are interested here in a converse of this interesting result.

Theorem 2.6. Let (H;(-,-)) and {x1,..., 2} be as above. Then for all z,y € H
one has the inequality:

(2.9) T(x4y, a1, .20 +]|e—y|> T(x1,..., %)

> 2[T(x, 21, .. 2n) + T(y, 21, ..., 20)].

Proof. If {«1,...,2,} is linearly dependent the inequality is obvious.

Suppose that {zi,...,2,} is linearly independent. Then by Lemma 1.1 we
have:

T(x+y,z1,...,209)
Tz, 21,...,2p)

=d*(x+y, H,) = zleIgn lx +y—2|]* = UIEHEn |l + v — 2ul|?.
Using the parallelogram identity:

|z + v —2u|]* + ||z — y||* = 2(||z — ul|* + ||y — u||2) forall z,y,ue H
we get:

inf —2u|]* = inf {2(||z — ul|* + ||y — u|*) = ]z — v
Juf Jle+y=2ull” = inf {2(lz = ull* +[ly = ull’) = [lz - I’}

Y

2{ inf —ull?+ inf _ 2} e (2
ol e =P infly = ulP] =l =l
le.

T(x+y,z1,...,209)
T(zy,...,2p)

Uz, xq,... 2, Ty, x1,..., 2,
-yl > 2 [t L0 )

T(zy,...,20) T(zy,...,24)

and the theorem is proved.



44 S. S. Dragomir, B. Mond

REMARK 2.7. If we change y with (—y) in (2.9), we get the similar inequality:
(2.10) D(x—y,x1,. .., 2n) +||le+y|* Tz, ..., 2,)

> 2[T(x, 21, .., 2n) + T(y, 21, .. ., 20)],

where z,y and z; (i = 1,n) are as above.
Thus, we can state that:

min{F(x — Y21,z e+ Yl T2, .. 20),
(2.11) D(z+y,21,...,25) + || — y||> T(zy, . . ., xn)}
> Q[F(x,xl,...,xn) —|—F(y,a:1,...,xn)].
Furthermore, by the elementary inequality
2(a® 4+ b%) > (a4 b)* for alla,b € R,
we get
Q[F(a:, 1., %) + Ty, 21,. .., xn)]

> ([F(x, 1, ..., xn)]l/z + [y, x1,. .., l’ﬂ)]l/z)z

which gives, by inequality (2.11),
[C(x,x1,...,2.)]Y 2+ [T(y, 21, ..., 20)]" >
(2.12) < min {(F(x — Y21,z e+ Y|P T2y, .. xn))l/z,
(Pl +y,z1,...,20) + |l = |2 T(21, - . -, xn))l/z}

i.e., converse of (1.5).

Now, we can give another results for Gramians.
Theorem 2.8. Let (H;(-,)) be an inner product space, {xy,...,x,} a system of
linearly independent vectors in H and k € {2,...,n— 1}, (n > 3). Then one has
the inequality:

(2.13) F(%’xl"”’x”) <l Dz, 2y, 2p) | Dy, epg1,.. ., %0)
T(zy,...,20) -2 I(eg,...,28) T(2pg1,. .5 2n)

forall z,y € H.

Proof. Fix k € {2,...,n — 1} and denote E := Sp{xy,...,ax} and By =
Splegs1, ..., an} and E := Ey @ Fs, i.e., the direct sum of the linear subspaces
FEy and FE5, this means that, for every x € F, there exists a unique z; € £ and a
unique xs € Fo so that © = x1 + 5.
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By the parallelogram identity one has:
e+ = (1 + w)|* +llz =y — g1 + ol =2 (le = 0l* + |ly — v:I°)
for all ,y € H and (y1,y2) € F1 x E3, which give us
e +y = (o + w2l <2(le = will* +lly = 1]?)

for all x,y € H and (y1,y2) € F1 X Es.
Now, we have:

inf r+y— + 2
(y1,y2)€F1 X By I y— (1 + 2l
(2.14) < inf 12 (lla = w2 + Iy — el?)]

T (Y1,y2)EE1 X B2
=2 [dz(l‘, El) + dz(e, Ez)]

On the other hand we have

. _ 2 — . _ 2 _ 2
(y17y2§161£1><E2 ||l‘ Ty (yl + y2)|| Zlélg ||l‘ ty Z” d (l‘ + v, E)

which gives, by (2.11), that:

(2.15) d*(z+y, E) <2[d*(z, 1) + d*(z, Ea)],
since
r r e, T
dz(l‘,El) — ($ax1a axk) ’ dz(l‘,Ez) — (xaxk-l—la y L )
T(zy,...,25) T(2pg1,. .5 2n)
and ( )
Iz, zq,..., 2,
d2 E — ) ) )
(2, E) L(z1,...,25)

the inequality (2.15) gives us the desired result (2.13).

REMARK 2.9. The above theorem gives us the possibility to consider the following

functional:
Tz, 2y, ... 25,)

F(l‘il, . ,l‘ln) ’

where € H, I is a finite part of A with T = {¢1,...,dp} and S = {z;}ica is a
linearly independent system of vectors in inner product space (H; (-, )).

P(x,I,5) =

By a similar argument as in the above theorem we can prove that

(2.16) " (x;y U, 5) < [, 1,9) + ¢(y, J,5)]

for all z,y € H and I, J disjoint finite parts of A.
The following corollary of theorem 2.8 also holds:
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Corollary 2.10. With the above assumptions we have:

Tz, z1,...,2n) 1 [T(z,21,...,25)  T(x,2541,...,20)
T(zy,...,zn) — 2 | T(ey,...,2k) T(zpg1,..- %)

(2.17)

forall x € H.
For other recent results connected with the GRAM determinant see the papers
[1], [2] and the book [4, Chapter XX] where further references are given.

REFERENCES

1. S. S. DrRAGOMIR, N. M. IoNEscU: A refinement of Gram inequality in inner product
spaces. Proc. of the Fourth Symp. of Math. and its Appl., Nov. 1991, Timisoara,
188-191.

2. S. S. DrRAGOMIR, B. MoND: On the superadditivity and monotonicity of Gram’s in-
equality and related results (submitted for publication).

3. T. FurUuTA: An elementary proof of Hadamard theorem. Mat. Vesnik, 8 (23) (1971),
267-269.

4. D. S. MitriNovi¢, J. E. PECARIC, A. M. FINK: Classical and New Inequalities in
Analysis. Kluwer Academic Publisher, Dordrecht/Boston/London, 1993

Department of Mathematics, (Received January 25, 1995)
Timisoara University,

B-dul V. Parvan No. 4,

Ro-1900 Timisoara,

Roménia

School of Mathematics,

Faculty of Science and Technology,
La Trobe University,

Bundoora, Victoria, Australia 3083



