Univ. Beograd. Publ. Elektrotehn. Fak.

PROBLEM SECTION

Edited by Milan J. Merkle

We publish research problems in all areas of Mathematics that fall in one of the following categories:
a) Research problems or conjectures with a solution not known to the proposer.
b) Research problems seeking a new, more elegant solution (the proposer should submit his/her solution).
c) Inquiries about references and state of the art regarding a particular problem.

Problems should be submitted in a form that is easy to understand to a nonspecialist in a field. If using special terms or notations can not be avoided, they should be defined in a statement of a problem. A problem may be accompanied by a short comment (addressed primarily to specialists) that explains why the solution could be of an interest.

Solutions should be worked out in all reasonable details. Solvers should enclose a photocopy of the relevant part of any reference that appears in a solution.

Any solution or an answer to inquiry will be proceeded to the proposer immediately upon receiving.

Correspondence regarding Problem Section should be sent to:
Milan Merkle, Faculty of Electrical Engineering, University of Belgrade, P. O. Box 816, 11001 Belgrade, Yugoslavia

- Problem 1.94 proposed by D.S. Mitrinović, Belgrade.

Let $x \mapsto f(x)$ be a continuously differentiable real function defined on $[0,1]$. Suppose that $f(0)=0$ and $0<f^{\prime}(x) \leq 1$ for $x \in[0,1]$. Find real numbers p and q such that

$$
\left(\int_{0}^{1} f(x) \mathrm{d} x\right)^{p} \geq \int_{0}^{1} f(x)^{q} \mathrm{~d} x
$$

Comment. The inequality holds for $p=2$ and $q=3$, as indicated in American Mathematical Monthly 81 (1974), 1086-1095.

- Problem 2.94 proposed by D. D. Tošić, Belgrade.

$$
\text { Evaluate } \lim _{a \rightarrow 0+}\left(\int_{-1}^{1} \frac{\cos x}{x^{4}+a^{4}} \mathrm{~d} x+\frac{\pi \sqrt{2}}{4 a^{3}}\left(a^{2}-2\right)\right)
$$

Generalization. Find the polynomial P_{n-1} with property

$$
\lim _{a \rightarrow 0+}\left(\int_{-1}^{1} \frac{f(x)}{x^{n}+a^{n}} \mathrm{~d} x-P_{n-1}\left(\frac{1}{a}\right)\right)=0
$$

where $z \mapsto f(z)$ is regular function in the disc containing the interval $[-1,1]$ and $n=2,3, \ldots$

Comment. The problem is connected with an expansion of the integral in (1) into Laurent series with respect to a.

- Problem 3.94 proposed by D.M. Milošević, Pranjani.

Prove or disprove:

$$
\frac{y+z}{x} \cdot \frac{1}{w_{a}^{2}}+\frac{z+x}{y} \cdot \frac{1}{w_{b}^{2}}+\frac{x+y}{z} \cdot \frac{1}{w_{c}^{2}} \geq \frac{18}{s^{2}},
$$

where w_{a}, w_{b}, w_{c} are anglebisectors and the semiperimeter of a triangle, and x, y, z are positive numbers.

Comment. The proposed inequality is a generalization of IX.11.1 in D.S. Mitrinović, J.E. Pečarić, V. Volonec, Recent advances in Geometric Inequalities, Kluwer, Dordrecht, 1989.

EDITORIAL NOTE

Several readers of our journal have informed us that the paper
B. Iričanin: Some quadrature formulas for analytic functions I, These Publications 4 (1993), 105-108.
contains some fallacies in the proof of its main resut. Details will be provided in one of the subsequent issues.

