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ON THE DISTANCE OF SOME COMPOUND
GRAPHS

Tvan Gutman

The distance d(G) of a connected graph G is the sum of the distances of all
pairs of vertices of G. Let S be a connected graph. The sets I, and J, are
defined so that I, = J; = {5}, and for n > 1 the elements of I,(J,) are graphs
obtained by identifying (joining) a vertex of S with a vertex of an element of
I,_1(Jn-1). It is demonstrated that if all the vertices of S are equivalent, then
for n > 1, G,G' € I, implies d(G) = d(G") (mod (|S| — 1)?), and G, G’ € J,, implies
d(G) = d(G") (mod |S|?); |S]| is the number of vertices of S.

1. INTRODUCTION

In this paper we are concerned with finite undirected graphs. Throughout
the entire paper it is understood that all the graphs considered are connected. The
number of vertices of a graph G is denoted by |G|.

The sum d(G) of distances of all pairs of vertices of a graph G, as well as
6N
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the closely related average vertex distance d(G), are the topic of numerous

contemporary mathematical researches; for some of the most recent works in this
field see [1, 4, 5, 8-12].

It was noticed some time ago that for certain classes of graphs it i1s possible to
find an integer m, such that the distances of all graphs from this class are congruent
modulo m. The simplest such regularity is observed in the class B, ; of connected
bipartite graphs with a + b vertices [2]: For all G € B,p, d(G) = ab(mod?2).
Eventually, some less obvious results of this type were discovered [6, 7], of which
we mention here only the case of chains of polygons. Each polygon in such a chain
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has 2k vertices, and each two adjacent polygons share one edge. If G and G’ are two
such chains, consisting of equal number of polygons, then [7] d(G) = d(G') (mod m)
where m = 2(k — 1)2.

In this paper we communicate two further results of the same kind. In order
to state them we need some preparation.

2. PRELIMINARIES

The vertex set of the graph G is denoted by V(). The distance between the
vertices u and v of G is denoted by d(u, v|G); it is equal to the number of edges in
the shortest path that connects u and v [3]. The distance d(u|G) of the vertex u
of G, and the distance d(G) of the graph G are defined as

(1) d(ulG) 1= > d(u,v]G),  d(G) ;:% > dul@).

veV(G) ueV(G)

Let S be a graph. We now recursively define two classes of graphs, I,, = 1,,(5)
and J, = J,(5).

Definition 1. I} = {S}. If n > 1, then every element of I, is obtained by taking
an element of In_1 (which, of course, is a graph) and identifying one of its vertices
with a vertex of an additional copy of S. The class I,, consists of all graphs which
can be constructed wn this manner.

Definition 2. J; = {S}. If n > 1, then every element of J, ts obtained by taking
an element of J,_1 (which is a graph) and joining one of its vertices to a vertex of
an additional copy of S. The class J,, consists of all graphs which can be constructed
wn this manner.

The number of vertices and edges of S are denoted by |S| and e(S), respec-
tively.

All graphs that belong to I, have n|S| — n+ 1 vertices and ne(S) edges. All
graphs that belong to J,, have n|S| vertices and ne(S)+n—1 edges. We mention in
passing that I,(K>) as well as J,, (K1) coincide with the set of n—vertex trees; this
fact is of little use for us because Theorems 1 and 2 (see below) reduce to trivial
statements when |S| = 2 and |S| = 1, respectively.

In what follows we will be interested in the special cases of the sets I, (5) and
Jn(S) when the graph S has the property .

Definition 3. We say that a connected graph S has the property m is for any two
vertices u and v of S, d(ulS) = d(v|S).

Among graphs that possess property 7 are those whose all vertices are equi-
valent (i.e., belong to the same orbit of the automorphism group).

3. STATEMENT OF THE RESULTS

Theorem 1. Let S be a graph with |S| vertices and m = (|S| — 1)%. Let
G, G € I,(S), where n is a positive integer. If S has the property m, then
d(G) = d(G") (modm).
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Theorem 2. Let S be a graph with |S| vertices and m = |S|?. Let G,G' € J,(9),
where n is a positive integer. If S has the property 7, then d(G) = d(G’') (modm).

4. PROOF OF THEOREM 1

First observe that because I; possesses only one element (S), Theorem 1
holds for n = 1 in a trivial manner. (The same is, of course, true for Theorem 2.)

Assume thus n > 1 and consider a graph G, G € [,. Let this graph be
obtained from a graph H, H € I,,_1, and a copy of S, so that a certain vertex y of
H is identified with a certain vertex z of S. Hence, in what follows y € V(H) and
z € V(S) denote he same vertex of G.

Lemma 1. Let G, G’ € I,(S), S has property =, x € V(G) and &' € V(G'). Then
foralln> 1,

2) d(z|G) = d(2'|G") mod (S| - 1).

Proof. Let x be an arbitrary vertex of G. Then either # € V(H) or € V(S) (or
both, in which case # = y = z).
If € V(H), then by taking into account (1) we have

(3) d(z|G)= > d(z,ulH)+ > dlx,u|G)—d(x,ylH).
weV (H) weVv(S)

Because of

(4) d(x,u|G) = d(x,y|H) + d(z,u|5)

Eq. (3) is transformed into

(5) d(x|G) = d(z|H) + d(z]5) + (S| = 1)d(w, y|H).

Let G be another graph from I,, and let its vertices and fragments be labeled
analogously as in the graph G. Then from (5),

(6) d(|G) — d(2'|G") = d(x|H) — d(2'|H') + d(2]5) — d('])

+ (IS] = Dld(x, y|H) — d(z', y'[H")].
If S has property , then the value of d(z|S) is independent of the choice of the
vertex z, and (6) is simplified:

(1) d(2|G) = d(2'|G) = d(2|H) — d(@'|[H') + (15| = D]d(2, y|H) — d(z", y'|H")].

In the above formulas, of course, H' € I,,_1.

If n = 1, then G = G' = S. Because of property 7, d(z|G) = d(«'|G’), and
therefore d(z|G) and d(2'|G") are certainly congruent modulo |S| — 1.

If n =2, then H = H' = S. Because of property m, d(x|H) = d(2'|H'). Then
from (7) we see that, again, d(z|G) and d(2'|G") are congruent modulo |S] — 1.
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Using (7) we now verify by induction on n that d(z|G) and d(z'|G') are
congruent modulo |S| — 1 for all values of n, n > 1.
Hence, Eq. (2) holds in the case # € V(H).

Examine now the other possible case, namely « € V(S). Then in parallel to

(3) and (4) one has
Z d(z,u|G) + Z d(z,u|S) — d(x, z|S)

w€V (H) u€eV(S)
d(z,u|G) = d(x, z|S) + d(y, u|H)
which result in
(8) d(2|G) = d(y|H) + d(x]S) + (|H| = 1)d(=, z[5).
Utilizing the facts that d(z|S) is independent of #, and that |H| = (n—1)|S|—n+2,
we obtain in analogy to (7):
(9) d(2|G) —d(2'|G') = d(y|H) = d(y'|H") + (n = 1)(|S] = D]d(x, 2| 5) — d(2", 2'|5)].

The same reasoning as in the case of Eq. (7) leads now to the conclusion that Eq.
(2) holds for € V(S).

By this the proof of Lemma 1 is completed.
Proof of Theorem 1. As already explained, Theorem 1 needs to be verified only
for n > 1. From the definition of graph distance, and bearing in mind the structure
of the graph GG € I,,, we immediately have

(10) d(G) =d(H + YD d(uv|G)
uEV’(H) veV(S)
where V/(H) = V(H)\{y} and V'(S) = V(S)\{z}. For the vertices u, v, specified
in Eq. (10),
(11) d(u,v|G) = d(u,y|H) + d(z,v|S).
Substituting (11) back into (10) and taking into account that |V/(H)| = |H|-1 =
(n—1)(|S] = 1) and |V/(S)| = |S| = 1, we obtain
(12)  d(G) =d(H) +d(S) + (|S| = Dd(y[H) + (n = 1)(|S] = 1)d(2]5).

Assuming that S has property 7 and using the same notation as in the proof of
Lemma 1, we obtain from (12),

(13) d(G) —d(G') = d(H) — d(H") + (IS] = DId(y|H) — d(y'|H")].
For n =2, d(H) = d(H') and d(y|H) = d(y'|H"). Therefore d(G) and d(G’)

coincide and therefore their difference is divisible by m = (|S] — 1)%. Because of
Lemma 1, the last term on the right-hand side of (13) is divisible by m for all
values of n. Therefore, d(G) and d(G’) are congruent modulo m if and only if d(H)
and d(H') are congruent modulo m.

Theorem 1 is now deduced from (13) by means of a simple inductive argument.
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5. PROOF OF THEOREM 2

Theorem 2 can be verified analogously as Theorem 1. In fact, the proof is
somewhat simpler because no vertex of a graph G € J,, belongs simultaneously to
both the fragments H € J,_; and S. As before, it may be assumed that n > 1.
Consider a graph G, GG € J,,. Let this graph be obtained from a graph H, H € J,_1,
and a copy of S, so that a new edge is introduced between a vertex y of H a vertex
z of S. In this case, of course, y and z are distinct vertices of GG

As before, we first establish a congruence relation for the vertex distances.
Lemma 2. Let G, G’ € J,(5), S has property n, © € V(G) and ' € V(G'). Then
foralln > 1, d(z|G) =d(2'|G') (mod |S]).

Sketch of the proof of Lemma 2. If # € V(H), then in parallel to (5) and (7),

d(x|G) = d(x|H) + d(2|S) + S| [d(x, y|H) + 1]
and
d(2|G) — d(2'|G") = d(x|H) — d(2'|H") + |S|[d(x, y| H) — d(2', y' [H")].
If € V(S), then instead of (8) and (9) one has
d(2|G) = d(y|H) + d(z]S) + | H|[d(z, 2|S) + 1]
and
d(x|G) = d(2'|G") = d(y|H) — d(y'[H") + (n — 1)|5] [d(x, 2|S) — d(2’, '] 5)]
where [H|= (n—1)|S|. In both cases, Lemma 2 is readily verified by induction on

the number n of S—fragments in the graph G.
Sketch of the proof of Theorem 2. Instead of Eqs. (10)—(13) we now arrive at

d(G)=d(H)+d(S)+ Y > d(u,v|G),

u€V(H) veV(5)
d(u,v|G) = d(u,y|H) + d(z,v|S) + 1,
d(G) = d(H) +d(S) + [S|d(y|H) + (n = 1)|S|d(z]S) + (n = 1)|S]?,
d(G) — d(G") = d(H) — d(H') + |S|[d(y|H) — d(y'[H")].

Theorem 2 follows by means of Lemma 2, using induction on the parameter n.
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