Univ. Beograd. Publ. Elektrotehn. Fak.

ON SOME INTEGRALS INVOLVING THE RIEMANN ZETA-FUNCTION IN THE CRITICAL STRIP

Aleksandar Ivić, Isao Kiuchi

For $1 / 2<\sigma<3 / 4$ let $E_{\sigma}(T)$ denote the error term in the asymptotic formula for $\int_{0}^{T}|\zeta(\sigma+i t)|^{2} \mathrm{~d} t$. If $U_{\sigma}(T)$ and $V_{\sigma}(T)$ denote the error terms in the asymptotic formulas for $\int_{0}^{T} E_{\sigma}(t)|\zeta(\sigma+i t)|^{2} \mathrm{~d} t$ and $\int_{0}^{T} E_{\sigma}(t)^{2}|\zeta(\sigma+i t)|^{2} \mathrm{~d} t$ respectively, then we obtain some asymptotic results on $U_{\sigma}(T)$ and $V_{\sigma}(T)$.

1. INTRODUCTION

Recently much work has been done on the function

$$
\begin{equation*}
E_{\sigma}(t)=\int_{0}^{T}|\zeta(\sigma+i t)|^{2} \mathrm{~d} t-\zeta(2 \sigma) T-\frac{(2 \pi)^{2 \sigma-1} \zeta(2-2 \sigma)}{2-2 \sigma} T^{2-2 \sigma} \tag{1}
\end{equation*}
$$

where $1 / 2<\sigma<1$ is fixed. This important function, which represents the error term in the mean square formula for the Riemann zeta-function $\zeta(s)$, in the so--called "critical strip" $1 / 2<\sigma(=\operatorname{Re} s)<1$, was introduced by K. Matsumoto [6]. He obtained several results, including an upper bound for the function

$$
\begin{equation*}
F_{\sigma}(T)=\int_{0}^{T} E_{\sigma}(t)^{2} \mathrm{~d} t-c(\sigma) T^{5 / 2-2 \sigma} \tag{2}
\end{equation*}
$$

[^0]where
(3) $c(\sigma)=\frac{2(2 \pi)^{2 \sigma-3 / 2}}{5-4 \sigma} \cdot \frac{\zeta^{2}(3 / 2) \zeta(5 / 2-2 \sigma) \zeta(1 / 2+2 \sigma)}{\zeta(3)} \quad(1 / 2<\sigma<3 / 4)$.

His work is continued in Matsumoto-Meurman [9], where it was proved that

$$
\begin{gather*}
F_{\sigma}(T)=O(T) \quad(1 / 2<\sigma<3 / 4) \tag{4}\\
\int_{0}^{T} E_{3 / 4}(t)^{2} \mathrm{~d} t=\frac{\zeta^{2}(3 / 2) \zeta(2)}{\zeta(3)} T \log T+O\left(T(\log T)^{1 / 2}\right),
\end{gather*}
$$

and

$$
\int_{0}^{T} E_{\sigma}(t)^{2} \mathrm{~d} t=O(T) \quad(3 / 4<\sigma<1)
$$

Some further results are obtained by Ivić-Matsumoto [4], and an extensive survey on the known results on $E_{\sigma}(T)$ is given by K. Matsumoto [7].

Recently the second author [5] proved that
(5) $\int_{0}^{T} E_{\sigma}(t)^{2}|\zeta(\sigma+i t)|^{2} \mathrm{~d} t= \begin{cases}c_{1} c_{3} T^{5 / 2-2 \sigma}+c_{5} T^{7 / 2-4 \sigma}+O(T) & (1 / 2<\sigma<5 / 8), \\ c_{1} c_{3} T^{5 / 2-2 \sigma}+O(T) & (5 / 8 \leq \sigma<3 / 4), \\ c_{4} \zeta(3 / 2) T \log T+O\left(T(\log T)^{1 / 2}\right) & (\sigma=3 / 4), \\ O(T) & (3 / 4<\sigma<1),\end{cases}$
where $c_{1}=c_{1}(\sigma)=\zeta(2 \sigma), c_{3}(\sigma)=c(\sigma)$ is given by (3),

$$
\begin{equation*}
c_{4}=\frac{\zeta^{2}(3 / 2) \zeta(2)}{\zeta(3)}, \quad c_{5}=c_{5}(\sigma)=\frac{5-4 \sigma}{7-8 \sigma}(2 \pi)^{2 \sigma-1} \zeta(2-2 \sigma) c(\sigma) \tag{6}
\end{equation*}
$$

The above results are the analogues of the results obtained by the first author ([2] and [3], Ch.3) for the integrals

$$
\int_{0}^{T} E(t)^{k}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \mathrm{~d} t
$$

in the case $k=2$. Here, as usual (γ is Euler's constant),

$$
E(T)=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \mathrm{~d} t-T\left(\log \frac{T}{2 \pi}+2 \gamma-1\right)
$$

is the error term in the asymptotic formula for the mean square of $\zeta(s)$ on the "critical line" $\sigma=\operatorname{Re} s=1 / 2$.

On some integrals involving the Riemann zeta-function in the critical strip 21

The aim of this note is to sharpen (5) in the range $1 / 2<\sigma<3 / 4$ and to investigate a related integral. To this end we define

$$
\begin{equation*}
U_{\sigma}(T)=\int_{0}^{T} E_{\sigma}(t)|\zeta(\sigma+i t)|^{2} \mathrm{~d} t-c_{1}(\sigma) B(\sigma) T-c_{2}(\sigma) B(\sigma) T^{2-2 \sigma} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{\sigma}(T)=\int_{0}^{T} E_{\sigma}(t)^{2}|\zeta(\sigma+i t)|^{2} \mathrm{~d} t-c_{1}(\sigma) c_{3}(\sigma) T^{5 / 2-2 \sigma}-c_{5}(\sigma) T^{7 / 2-4 \sigma} \tag{8}
\end{equation*}
$$

where $c_{1}(\sigma)=\zeta(2 \sigma), B(\sigma)=-2 \pi \zeta(2 \sigma-1), c_{3}(\sigma)=c(\sigma)$ is given by $(3), c_{5}(\sigma)$ by (6), and

$$
\begin{equation*}
c_{2}(\sigma)=\frac{(2 \pi)^{2 \sigma-1} \zeta(2-2 \sigma)}{2-2 \sigma} \tag{9}
\end{equation*}
$$

Then we shall prove
Theorem 1. For fixed σ such that $1 / 2<\sigma<3 / 4$ and $U_{\sigma}(T)$ defined by (7) we have

$$
\begin{gather*}
U_{\sigma}(T)=O\left(T^{5 / 4-\sigma}\right), \quad U_{\sigma}(T)=\Omega_{ \pm}\left(T^{5 / 4-\sigma}\right) \tag{10}\\
\int_{0}^{T} U_{\sigma}(t) \mathrm{d} t=\frac{1}{2} c(\sigma) T^{5 / 2-2 \sigma}+O\left(T^{7 / 4-\sigma}\right) \tag{11}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{0}^{T} U_{\sigma}(t)^{2} \mathrm{~d} t=c_{1}(\sigma)^{2} c_{6}(\sigma) T^{7 / 2-2 \sigma}+O\left(T^{9 / 2-4 \sigma}+T^{(11-8 \sigma) / 3}\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{6}=\frac{4^{\sigma-1} \pi^{2 \sigma-3} \sqrt{2 \pi}}{7-4 \sigma} \sum_{n=1}^{+\infty} \sigma_{1-2 \sigma}(n)^{2} n^{2 \sigma-7 / 2}, \quad \sigma_{z}(n)=\sum_{d \mid n} d^{z} \quad(z \in \mathbf{C}) \tag{13}
\end{equation*}
$$

Theorem 2. For fixed σ such that $1 / 2<\sigma<3 / 4, V_{\sigma}(T)$ defined by (8) and $F_{\sigma}(T)$ defined by (2) we have

$$
\begin{equation*}
V_{\sigma}(T)=\zeta(2 \sigma) F_{\sigma}(T)+O\left(T^{2-2 \sigma}\right) \tag{14}
\end{equation*}
$$

We remark that (14) coupled with (4) implies the first two formulas in (5). We recall that $f(x)=\Omega_{ \pm}(g(x)) \quad\left(g(x)>0\right.$ for $\left.x \geq x_{0}\right)$ means that both

$$
\liminf _{x \rightarrow \infty} \frac{f(x)}{g(x)}<0 \quad \text { and } \quad \limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)}>0
$$

hold.

2. PROOF OF THEOREM 1

Let $0 \leq H \leq T, f(t) \in C[T, T+H]$, and $F^{\prime}=f$. Then from (1) it follows that

$$
\begin{equation*}
\int_{T}^{T+H} f\left(E_{\sigma}(t)\right)|\zeta(\sigma+i t)|^{2} \mathrm{~d} t \tag{15}
\end{equation*}
$$

$$
\begin{aligned}
& =\int_{T}^{T+H} f\left(E_{\sigma}(t)\right) \mathrm{d} E_{\sigma}(t)+\int_{T}^{T+H} f\left(E_{\sigma}(t)\right)\left(\zeta(2 \sigma)+(2 \pi)^{2 \sigma-1} \zeta(2-2 \sigma) t^{1-2 \sigma}\right) \mathrm{d} t \\
& =F\left(E_{\sigma}(T+H)\right)-F\left(E_{\sigma}(T)\right)+\int_{T}^{T+H} f\left(E_{\sigma}(t)\right)\left(\zeta(2 \sigma)+(2 \pi)^{2 \sigma-1} \zeta(2-2 \sigma) t^{1-2 \sigma}\right) \mathrm{d} t
\end{aligned}
$$

We shall apply (15) with $H=T, f(t)=t, F(t)=t^{2} / 2$, and use the notation

$$
\begin{equation*}
\int_{0}^{T} E_{\sigma}(t) \mathrm{d} t=B(\sigma) T+G_{\sigma}(T) \tag{16}
\end{equation*}
$$

The function $G_{\sigma}(T)$ was introduced by the first author in [3], Ch. 3 (the lower bound of integration in [3] was 2 , but this is of no consequence). He showed that

$$
\begin{equation*}
G_{\sigma}(T)=O\left(T^{5 / 4-\sigma}\right), \quad G_{\sigma}(T)=\Omega_{ \pm}\left(T^{5 / 4-\sigma}\right) \tag{17}
\end{equation*}
$$

thereby determining the true order of magnitude of $G_{\sigma}(T)$. The constant $B(\sigma)$ was explicitly given in [3] by a rather complicated expression, which was simplified in Matsumoto-Meurman [9] to $B(\sigma)=-2 \pi \zeta(2 \sigma-1)$. Thus from (15) we obtain, with the aid of (16),

$$
\int_{T}^{2 T} E_{\sigma}(t)|\zeta(\sigma+i t)|^{2} \mathrm{~d} t=\frac{1}{2} E_{\sigma}(2 T)^{2}-\frac{1}{2} E_{\sigma}(T)^{2}
$$

On some integrals involving the Riemann zeta-function in the critical strip 23

$$
\begin{aligned}
& +\int_{T}^{2 T}\left(\zeta(2 \sigma)+(2 \pi)^{2 \sigma-1} \zeta(2-2 \sigma) t^{1-2 \sigma}\right)\left(B(\sigma) \mathrm{d} t+\mathrm{d} G_{\sigma}(t)\right) \\
& =\left(\frac{1}{2} E_{\sigma}(t)^{2}+\zeta(2 \sigma) B(\sigma) t+c_{2}(\sigma) B(\sigma) t^{2-2 \sigma}+\zeta(2 \sigma) G_{\sigma}(t)\right. \\
& \left.+(2 \pi)^{2 \sigma-1} \zeta(2-2 \sigma) t^{1-2 \sigma} G_{\sigma}(t)\right)\left.\right|_{T} ^{2 T} \\
& \quad+(2 \sigma-1)(2 \pi)^{2 \sigma-1} \zeta(2-2 \sigma) \int_{T}^{2 T} G_{\sigma}(t) t^{-2 \sigma} \mathrm{~d} t
\end{aligned}
$$

Replacing T by $T / 2^{j}$ and summing over $j=1,2, \ldots$, we obtain, in view of (7),

$$
\begin{align*}
U_{\sigma}(T) & =\frac{1}{2} E_{\sigma}(T)^{2}+\zeta(2 \sigma) G_{\sigma}(T)+(2 \pi)^{2 \sigma-1} \zeta(2-2 \sigma) T^{1-2 \sigma} G_{\sigma}(T) \tag{18}\\
& +(2 \sigma-1)(2 \pi)^{2 \sigma-1} \zeta(2-2 \sigma) \int_{1}^{T} G_{\sigma}(t) t^{-2 \sigma} \mathrm{~d} t+O(1)
\end{align*}
$$

From (18) we shall deduce now all the results of Theorem 1. In [3] it was proved that, for $1 / 2<\sigma<1, \quad E_{\sigma}=O\left(T^{1-\sigma}\right)$. This was improved in [4] to $E_{\sigma}(t)=$ $O\left(T^{2(1-\sigma) / 3} \log ^{2 / 9} T\right)$, but by combining several estimates which come from the use of the theory of exponent pairs one can dispose of the log-factor and obtain in fact

$$
\begin{equation*}
E_{\sigma}(T)=O\left(T^{2(1-\sigma) / 3}\right) \quad(1 / 2<\sigma<1) \tag{19}
\end{equation*}
$$

Hence from (17)-(19) we easily obtain (10), since $G_{\sigma}(T)$ is the dominant term in (18).

To obtain (11) we use Theorem 3.2 of [3], which states that

$$
\begin{align*}
& G_{\sigma}(T)=2^{\sigma-2}\left(\frac{\pi}{T}\right)^{\sigma-\frac{1}{2}} \sum_{n \leq N}(-1)^{n} \sigma_{1-2 \sigma}(n) n^{\sigma-1} \tag{20}\\
& \cdot\left(\operatorname{arsinh} \sqrt{\frac{\pi n}{2 T}}\right)^{-2}\left(\frac{T}{2 \pi n}+\frac{1}{4}\right)^{-1 / 4} \sin (f(T, n)) \\
& -2\left(\frac{2 \pi}{T}\right)^{\sigma-\frac{1}{2}} \sum_{n \leq N^{\prime}} \sigma_{1-2 \sigma}(n)^{\sigma-1} n^{\sigma-1}\left(\log \frac{T}{2 \pi n}\right)^{-2} \sin (g(T, n))+O\left(T^{3 / 4-\sigma}\right)
\end{align*}
$$

where, for arbitrary fixed constants $0<A<A^{\prime}, A T<N<A^{\prime} T$,

$$
N^{\prime}=\frac{T}{2 \pi}+\frac{N}{2}-\left(\frac{N^{2}}{4}+\frac{N T}{2 \pi}\right)^{1 / 2}
$$

$$
\begin{aligned}
& f(T, n)=2 T \operatorname{arsinh} \sqrt{\frac{\pi n}{2 T}}+\left(2 \pi n T+\pi^{2} n^{2}\right)^{1 / 2}-\frac{\pi}{4} \\
& g(T, n)=T \log \frac{T}{2 \pi n}-T+\frac{\pi}{4}
\end{aligned}
$$

and

$$
\operatorname{arsinh} x=\log \left(x+\sqrt{x^{2}+1}\right)
$$

The contribution of the error term in (20) is estimated trivially, and for the sums over n we use the first derivative test (Lemma 2.1 of [1]) to obtain

$$
\int_{T}^{2 T} G_{\sigma}(t) \mathrm{d} t=O\left(T^{7 / 4-\sigma}\right), \quad \int_{T}^{2 T} t^{1-2 \sigma} G_{\sigma}(t) \mathrm{d} t=O\left(T^{11 / 4-3 \sigma}\right)
$$

and then by integration by parts and the first of the above estimates

$$
\int_{1}^{T} G_{\sigma}(t) t^{-2 \sigma} \mathrm{~d} t=O\left(T^{7 / 4-3 \sigma}+\log T\right)
$$

It follows from (2), (4), (18) and the above estimates that

$$
\int_{T}^{2 T} U_{\sigma}(t) \mathrm{d} t=\frac{1}{2} c(\sigma) T^{5 / 2-2 \sigma}+O\left(T^{7 / 4-\sigma}\right)
$$

which in turn implies (11).
It is not unreasonable to conjecture that

$$
\begin{equation*}
\int_{0}^{T} U_{\sigma}(t) \mathrm{d} t-\frac{1}{2} c(\sigma) T^{5 / 2-2 \sigma}=\Omega_{ \pm}\left(T^{7 / 4-\sigma}\right) \tag{21}
\end{equation*}
$$

The omega-result in (21) would be an analogue of $V(T)=\Omega_{ \pm}\left(T^{5 / 4} \log T\right)$ of Theorem 3.7 of [3]. However, (21) appears to be more difficult and at present we cannot prove it. The reason for this is essentially the appearance of " $\log T$ " in the definition of $E(T)$, while there is no logarithm in the definition (1) of $E_{\sigma}(T)$, although $E(T)=\lim _{\sigma \rightarrow \frac{1}{2}+0} E_{\sigma}(T)$. Analysing the proof of Theorem 3.7 of [3] it will be clear that it is precisely the appearance of $\log T$ in front of the series in (3.99) of [3] which makes it possible to deduce that $V(T)=\Omega_{ \pm}\left(T^{5 / 4} \log T\right)$, and such an argument is not applicable in the case of (21).

To prove (12) note first that from (18) we have

$$
\begin{equation*}
U_{\sigma}(t)=\frac{1}{2} E_{\sigma}(t)^{2}+\zeta(2 \sigma) G_{\sigma}(t)\left(1+O\left(t^{1-2 \sigma}\right)\right)+O\left(t^{7 / 4-3 \sigma}+\log t\right) \tag{22}
\end{equation*}
$$

This gives

$$
\begin{align*}
\int_{T}^{2 T} U_{\sigma}(t)^{2} \mathrm{~d} t= & \left(\zeta^{2}(2 \sigma)+O\left(T^{1-2 \sigma}\right)\right) \int_{T}^{2 T} G_{\sigma}(t)^{2} \mathrm{~d} t+\frac{1}{4} \int_{T}^{2 T} E_{\sigma}(t)^{4} \mathrm{~d} t \tag{23}\\
& +\zeta(2 \sigma) \int_{T}^{2 T} G_{\sigma}(t) E_{\sigma}(t)^{2}\left(1+O\left(t^{1-2 \sigma}\right)\right) \mathrm{d} t \\
& +O\left(\int_{T}^{2 T}\left(\left|G_{\sigma}(t)\right|+\left|E_{\sigma}(t)\right|^{2}\right)\left(t^{7 / 4-3 \sigma}+\log t\right) \mathrm{d} t\right) \\
& +O\left(T^{9 / 2-6 \sigma}+T \log ^{2} T\right)
\end{align*}
$$

We shall use now Theorem 3.5 of [3] which says that

$$
\begin{equation*}
\int_{2}^{T} G_{\sigma}(t)^{2} \mathrm{~d} t=c_{6}(\sigma) T^{7 / 2-2 \sigma}+O\left(T^{3-2 \sigma}\right) \tag{24}
\end{equation*}
$$

with $c_{6}(\sigma)$ given by (13). It follows from (2), (4) and (19) that

$$
\int_{T}^{2 T} E_{\sigma}(t)^{4} \mathrm{~d} t \ll \max _{T \leq t \leq 2 T}\left|E_{\sigma}(t)\right|^{2} \int_{T}^{2 T} E_{\sigma}(t)^{2} \mathrm{~d} t \ll T^{23 / 6-10 \sigma / 3}
$$

Thus by the Cauchy-Schwarz inequality, we have

$$
\int_{T}^{2 T} G_{\sigma}(t) E_{\sigma}(t)^{2} \mathrm{~d} t \lll T^{(11-8 \sigma) / 3}
$$

and

$$
\int_{T}^{2 T}\left(\left|G_{\sigma}(t)\right|+\left|E_{\sigma}(t)\right|^{2}\right)\left(t^{7 / 4-3 \sigma}+\log t\right) \mathrm{d} t \ll T^{4-4 \sigma}+T^{9 / 4-\sigma} \log T
$$

Consequently from (23) and (24) we obtain

$$
\begin{aligned}
\int_{T}^{2 T} U_{\sigma}(t)^{2} \mathrm{~d} t & =\left.\zeta^{2}(2 \sigma) c_{6}(\sigma) t^{7 / 2-2 \sigma}\right|_{T} ^{2 T} \\
& +O\left(T^{(11-8 \sigma) / 3}+T^{9 / 2-4 \sigma}+T^{9 / 4-\sigma} \log T+T^{4-4 \sigma}\right)
\end{aligned}
$$

The largest of the exponents in the error term is $9 / 2-4 \sigma$, $(11-8 \sigma) / 3$ for $1 / 2<\sigma \leq 5 / 8,5 / 8 \leq \sigma<3 / 4$, respectively, and therefore (12) follows.

3. PROOF OF THEOREM 2

We start from (15) with $H=T, f(t)=t^{2}$ and $F(t)=t^{3} / 3$. Using (2) and (19) we obtain

$$
\begin{aligned}
& \int_{T}^{2 T} E_{\sigma}(t)^{2}|\zeta(\sigma+i t)|^{2} \mathrm{~d} t \\
= & \frac{1}{3} E_{\sigma}(2 T)^{3}-\frac{1}{3} E_{\sigma}(T)^{3}+\int_{T}^{2 T}\left(\zeta(2 \sigma)+(2 \pi)^{2 \sigma-1} \zeta(2-2 \sigma) t^{1-2 \sigma}\right) E_{\sigma}(t)^{2} \mathrm{~d} t \\
= & O\left(T^{2-2 \sigma}\right)+\int_{T}^{2 T}\left(\zeta(2 \sigma)+(2 \pi)^{2 \sigma-1} \zeta(2-2 \sigma) t^{1-2 \sigma}\right) . \\
= & O\left(t^{2-2 \sigma}\right)+\left(\zeta(2 \sigma) c(\sigma) t^{5 / 2-2 \sigma}+\frac{(5-4 \sigma)(2 \pi)^{2 \sigma-1} \zeta(2-2 \sigma) c(\sigma)}{7-8 \sigma} t^{7 / 2-4 \sigma}\right. \\
& \left.+\zeta(2 \sigma) F_{\sigma}(t)+(2 \pi)^{2 \sigma-1} \zeta(2-2 \sigma) t^{1-2 \sigma} F_{\sigma}(t)\right)\left.\right|_{T} ^{2 T} \\
& +(2 \sigma-1)(2 \pi)^{2 \sigma-1} \zeta(2-2 \sigma) \int_{T}^{2 T} F_{\sigma}(t) t^{-2 \sigma} \mathrm{~d} t .
\end{aligned}
$$

This holds for $1 / 2<\sigma<1$, but using (4) in the range $1 / 2<\sigma<3 / 4$ we obtain

$$
\begin{equation*}
V_{\sigma}(2 T)-V_{\sigma}(T)=\zeta(2 \sigma)\left(F_{\sigma}(2 T)-F_{\sigma}(T)\right)+O\left(T^{2-2 \sigma}\right) \tag{25}
\end{equation*}
$$

and from (25) we easily obtain (14). Lack of bounds for the integrals of $F_{\sigma}(T)$ and $F_{\sigma}(T)^{2}$ precludes the derivation of the analogues of (11) and (12) for $V_{\sigma}(T)$.

We conclude by making some remarks and conjectures. Note that Matsu-moto-Meurman [9] proved, for $1 / 2<\sigma<3 / 4$, that

$$
\begin{equation*}
F_{\sigma}(T)=\Omega\left(T^{9 / 4-3 \sigma}(\log T)^{3 \sigma-3 / 4}\right) \tag{26}
\end{equation*}
$$

where as usual $f(x)=\Omega(g(x)) \quad\left(g(x)>0\right.$ for $\left.x \geq x_{0}\right)$ means that

$$
\limsup _{x \rightarrow \infty} \frac{|f(x)|}{g(x)}>0
$$

They also conjectured, for $1 / 2<\sigma<3 / 4$, that as $T \rightarrow \infty$

$$
\begin{equation*}
F_{\sigma}(T)=\left(B(\sigma)^{2}+o(1)\right) T \tag{27}
\end{equation*}
$$

If (27) is true, then from (14) it follows that, as $T \rightarrow \infty$,

$$
\begin{equation*}
V_{\sigma}(T)=\left(\zeta(2 \sigma) B(\sigma)^{2}+o(1)\right) T \quad(1 / 2<\sigma<3 / 4) \tag{28}
\end{equation*}
$$

Perhaps, if (27) is not true, then in view of (26) one has

$$
\begin{equation*}
V_{\sigma}(T)=\Omega\left(T^{9 / 4-3 \sigma}(\log T)^{3 \sigma-3 / 4}\right) \quad(1 / 2<\sigma<3 / 4) \tag{29}
\end{equation*}
$$

Note that, in view of (16) and (17), B(σ) is the mean value of $E_{\sigma}(T)$. Hence it seems to make sense to evaluate also

$$
\begin{aligned}
K_{\sigma}(T): & =\int_{0}^{T}\left(E_{\sigma}(t)-B(\sigma)\right)^{2}|\zeta(\sigma+i t)|^{2} \mathrm{~d} t \\
& =\int_{0}^{T} E_{\sigma}(t)^{2}|\zeta(\sigma+i t)|^{2} \mathrm{~d} t-2 B(\sigma) \int_{0}^{T} E_{\sigma}(t)|\zeta(\sigma+i t)|^{2} \mathrm{~d} t \\
& +B(\sigma)^{2} \int_{0}^{T}|\zeta(\sigma+i t)|^{2} \mathrm{~d} t
\end{aligned}
$$

Using (1), (7) and (8) we can write

$$
\begin{aligned}
K_{\sigma}(T) & =c_{1}(\sigma) c_{3}(\sigma) T^{5 / 2-2 \sigma}+c_{5}(\sigma) T^{7 / 2-4 \sigma}-c_{1}(\sigma) B(\sigma)^{2} T \\
& -c_{2}(\sigma) B(\sigma)^{2} T^{2-2 \sigma}+V_{\sigma}(T)-2 B(\sigma) U_{\sigma}(T)+B(\sigma)^{2} E_{\sigma}(T)
\end{aligned}
$$

Using (14), (19) and (22) we obtain then

$$
\begin{equation*}
K_{\sigma}(T)=c_{1}(\sigma) c_{3}(\sigma) T^{5 / 2-2 \sigma}+c_{5}(\sigma) T^{7 / 2-4 \sigma}-c_{1}(\sigma) B(\sigma)^{2} T \tag{30}
\end{equation*}
$$

$-c_{2}(\sigma) B(\sigma)^{2} T^{2-2 \sigma}+c_{1}(\sigma) F_{\sigma}(T)-2 c_{1}(\sigma) B(\sigma) G_{\sigma}(T)\left(1+O\left(T^{1-2 \sigma}\right)\right)+O\left(T^{2-2 \sigma}\right)$.
If (27) holds then (30) yields, as $T \rightarrow \infty$,

$$
\begin{equation*}
K_{\sigma}(T)=c_{1}(\sigma) c_{3}(\sigma) T^{5 / 2-2 \sigma}+c_{5}(\sigma) T^{7 / 2-4 \sigma}+o(T) \tag{31}
\end{equation*}
$$

It appears to us that perhaps the error term in (31) is $O\left(T^{2-2 \sigma}\right)$. The viewpoint is also shared by K. Matsumoto who, in correspondence, has kindly made several remarks concerning the true order of the functions $F_{\sigma}(T)$ and $K_{\sigma}(T)$. In particular, he pointed out that, in view of his recent work [8], it is quite plausible that

$$
\begin{equation*}
F_{\sigma}(T)=B(\sigma)^{2} T+O\left(T^{2-2 \sigma} \log ^{C} T\right) \quad(1 / 2<\sigma<3 / 4, C \geq 0) \tag{32}
\end{equation*}
$$

holds, perhaps even with $C=0$. Note that (31) is stronger than (27). If it is true, then (30) gives

$$
K_{\sigma}(T)=c_{1}(\sigma) c_{3}(\sigma) T^{5 / 2-2 \sigma}+c_{5}(\sigma) T^{7 / 2-4 \sigma}+O\left(T^{2-2 \sigma} \log ^{C} T\right)
$$

REFERENCES

1. A. Ivić: The Riemann zeta-function. John Wiley \& Sons, New York, 1985.
2. A. Ivić: On some integrals involving the mean square formula for the Riemann zetafunction. Publs. Inst. Math. (Belgrade) 46 (60) (1989), 33-42.
3. A. Ivić: Mean values of the Riemann zeta-function. Tata Inst. Fund. Res. LNS 82, Bombay, 1991 (distr. by Springer Verlag).
4. A. Ivić, K. Matsumoto: On the error term in the mean square formula for the Riemann zeta-function in the critical strip. Monatsh. Math. (subm.).
5. I. KIUCHI: An integral involving the error term of the mean square of the Riemann zeta-function in the critical strip. Math. J. Okayama Univ. (in print.).
6. K. Matsumoto: The mean square of the Rieman zeta-function in the critical strip. Japanese J. Math. 15 (1989), 1-13.
7. K. Matsumoto: On the function $E_{\sigma}(T)$. Kōkyūroku (to appear).
8. K. Matsumoto: On the bounded term in the mean square formula for the approximate functional equation of $\zeta^{2}(s)$, preprint.
9. K. Matsumoto, T. Meurman: The mean square of the Riemann zeta-function in the critical strip II. Acta Arith., (to appear); III ibid. 64 (1993), 357-382.

Department of Mathematics,
Faculty of Mining and Geology,
University of Belgrade,
Đušina 7, 11000 Belgrade,
Yugoslavia

Department of Mathematics, Faculty of Liberal Arts,
Yamaguchi University,
Yamaguchi, Yoshida 1677-1, 753 Japan

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification: 11M06

