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A SEARCH FOR 4-DESIGNS ARISING BY
ACTION OF PGL(2,q)!

Dragan M. Acketa, Vojislav Mudrinski, Pura Paunié

A complete search for 4-(¢+1,5, A) designs arising by action of groups PGL(2, q)
is made, for all prime powers ¢ < 32. The search is based on the use of (X;;)
matrices, which are constructed by using 3-homogenicity of this action. The
elements of these matrices are numbers of inclusions of 4-subsets of the ground-
set within 5-subsets, partitioned w.r.t. the orbits. It turns out that there exist

only eight designs of the considered type, two for ¢ = 17 and six for ¢ = 32.

1. INTRODUCTION AND CONSTRUCTION

An n—set is a set of cardinality n. A t-(v,k, A) design [3] is an incidence
structure on v points, which consists of some k-sized sets of points (called blocks)
without repetitions and satisfies the property that each ¢ points are contained in
exactly A blocks. As usual, GF(q) denotes the Galois field associated to a prime
power ¢q. PGL(2,q) denotes the group of projective linear transformations over
(GF(q))?. Each element of PGL(2, q) can be represented by a regular 2 x 2 matrix

of the form M = [ 9+ 92 ,
b1 by

which acts as follows:
— ay as . _ M
(T1,T2) = (w1, 22) - ( b by ) (equivalently, & = 2™ ),

where (a1,as2), * = (r1,75) and T = (Ty,T2) are general elements of (GF(q))?,
while (b1, ba) is required to belong to the canonical set
C(q):{(o’l)’ (1’1)""a (q_lal)a (1a0)}~
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Tt is known that PGL(2,¢) acts 3-transitively on the ground-set
Vi(g) =10,1,...,¢ — 1} U {c0}.

Consider the mapping 3 : V(q) — C(q) defined by z° = (z,1) for z €
{0,1,...,¢ — 1} and oo = (1,0). The image T € V(q) of an element = € V(q)
under an element M of PGL(2,q) is determined as T = xﬁMVﬁ_l, where v maps
each non-zero element y of (GF(¢))? onto the unique element of C'(¢), which belongs
to the 1-dimensional subspace determined by y.

The group PGL(2, q) can be also represented by an array of size (¢> — ¢) x ¢,
each row of which is a permutation of V(¢). This representation turned out to be
inefficient in implementation of the algorithm, it was tried and abandoned. The
2 x 2 matrix representation of elements of PGL(2, ¢), mentioned in the beginning
of the paper, was used for the computations.

Let T and B denote the families of all those subsets of V(¢q), which are of
cardinalities 4 and 5 respectively and let 73,...,7, and Bi,..., B, denote the
orbits of T and B by action of PGL(2,q).

It is easy to show for each i € {1,...,m} and for each j € {1,...,n} (details
can be found in [1) that each 4-subset of T} is contained into the same number
(denoted by A;;) of 5-subsets of B;. Conversely, each 5-subset of B; is contained into
the same number (denoted by h;;) of 4-subsets of 7;. It holds that A1 +-- -4+ X, =
g — 3 = X of the trivial design, for each i € {1,...,m} and hi; + - -+ hy; =5, for
each j € {1,...,n}.

The 3-homogenicity of the action of PGL(2,¢) enables a reduction of the
search for orbits of 4-subsets and 5-subsets of V(g¢) to those of these subsets, which
contain a fixed 3-subset S. This leads to an efficient method (described in more
details in [1]) for computing the (A;;) matrix. When looking for the (h;;) ma-
trix, the considerations should also include those 4-subsets of V'(¢), which have 2-
intersections with S. The i-th row of the (A;;) matrix (the j-th column of the (h;;)
matrix) can be calculated by considering the partition w.r.t. orbits of 5-supersets
(4-subsets) of a representative of T; (B;.)

Counting the incidencies between 4-subsets in 7} and 5-subsets in B; in two
different manners, it immediately follows that |T;|-A;; = |B;|- hi;. This relationship
enables the computation of one of the two matrices from the other, provided that
the orbit cardinalities are known.

Example. The (h;;) matrix for ¢ = 32, with the same order of orbits as with the
(Aij) matrix in Table 1., has the following outlook:

4 1 2 1 1 1 1 0 0 0 0
1 1 0 2 1 1 0 4 1 0 0
0 0 1 1 1 1 4 0 2 1 0
0 2 1 1 1 0 0 0 1 4 1
0 1 1 0 1 2 0 1 1 0 4

Each one of the five orbits of 4-subsets is of cardinality 267. The 1st, the 7th, the
8th, the 10th and the 11th orbit of b-subsets is of cardinality 15 (these five orbits
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will have a special role in Section 2), while the remaining six orbits of 5-subsets are
of cardinality 60.

Having the (A;;) matrix, the construction itself runs as follows:

A search for those non-trivial 4-designs is made, the blocks of which are all the
5-subsets of orbits B;,,..., B;,, for some proper subset {ji,...,j:} of {1,...,n}.
The condition for existence of such a 4-design is that the sums A;;, + - -4 A5, are
equal for all i € {1,... m}; if this is the case, then the common value of these sums
is A of the design.

Thus a non-trivial 4-design corresponds to a proper subset P of the column
set of the (X;;) matrix, with the property that all the row sums of the submatrix
determined by P are equal. A search for such a submatrix can be performed, e.g.,
by applying the GRAY code to the column set.

2. RESULTS

The results of the performed computer search for 4-designs, which arise by
action of PGL(2,q), can be summarized as follows:
Theorem 1. Action of the group PGL(2,q) for prime powers ¢ < 32 gives exactly
eight 4-(q + 1,5, X) designs, for the pairs (¢, ) equal to (17,4), (17,10), (32,4),
(32,5), (32,9), (32,20), (32,24) and (32, 25).
Proof. The (};;) matrices for ¢ < 32, obtained by the above method, are shown in
Table 1. The value of ¢ is given in the upper left direction with respect to a matrix.
A row of a (\;;) matrix denoted by (a) corresponds to the orbit of 4-sets having
the representative {0, 1, a,c0}. Similarly, a column denoted by (a,b) corresponds
to the orbit of 5-sets having the representative {0,1,a,b, o0} :

Table 1. (A;;) matrices for ¢ < 32

5 | (2,3) 71 (2,3) 8 | (2,3)
21 2 21 4 (2 1 5
31 4

9 | (2,3)(3,5) 11 1 (2,3)(3,48)
(2) | 6 0 (2) | 8 0
31 4 2 (3) | 6 2

13 | (2,3)(2,6)(3,4) 16 | (2,3)(2,5)(2,6)(6,7)
(2) | 8 2 0 (2) | 1 8 0
31 4 4 2 (4) | 1 8
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Table 1 (continued)

17 1 (2,3)(2,5)(2,6)(3,7) 19 | (2,3)(2,5)(3,4)(3,8)(4,5)
(2) | 8 2 4 0 (2) | 8 8 0 0 0
31 4 0 4 6 31 4 4 6 2 0
(4) | 2 4 4 4 a1 2 8 4 0 2
(8) | 0 12 0 4 0

2 1 2 8 8 4 0 0 0 0
GBIl o 4 4 4 6 4 0 0
)1 o 4 4 4 0 4 6 0
(m 1o 8 4 0 4 0 4 2
8 1 o 0 12 0 0 6 0 4

(2) | 24 0 0 0 0 0 0 0
@)1 4 6 4 4 4 2 0 0
)1 4 4 0 0 4 4 6 2
)| 4 0 4 0 8 4 0 4
(1 4 0 2 6 4 0 4 4
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Table 1 (continued)

(2,3)(2,5)(2,6)(2,8)(3,4)(3,7)(3,8)(3,10)(4,9)(5,6) (12,13)

It 1s readily checked that a proper submatrix, which consists of whole columns
and has the equal sums in all the rows, does exist only for ¢ = 17 and ¢ = 32. Three
such submatrices, corresponding to the pairs (17,4), (32,4) and (32,5), are shown
in Table 2 (the submatrices consist of the rounded columns). The submatrix com-
posed of all the columns of the last two submatrices leads to the pair (32,9). The
remaining four designs mentioned in the theorem correspond to the submatrices,
which are complementary w.r.t. the first four. O
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3. SOME OBSERVATIONS ON THE CONSTRUCTED 4-DESIGNS

The 4-(18,5,4) design was primarily constructed by W. O. ALLTOP by a
somewhat more specific method, which also uses the orbits of 4-subsets and 5-
subsets by action of PGL(2,q). This construction was described in [3], Example
8.5, pp. 186-187. It might be said that the above described method, which is based
the use of (\;;) matrices, is an improvement of the ALLTOP’s method. This improve-
ment enables a complete search for 4-designs which arise by action of PGL(2, g).

The constructed 4-(33,5,5) design is recognized as the first member of an
infinite class (also constructed by W. O. ArLrToP in [2]) of 4-(¢ 4+ 1, 5,5) designs,
where ¢ is of the form 2% for odd numbers k& > 5. More precisely, the families of
blocks of designs in this class consist of those orbits by action of PGL(2,q), which
have a representative of the form {0,1,a,a+ 1,00}, for some a € {2,3,...,¢— 1}.
The given representatives of the 1., 7., 8., 10. and 11. orbit for ¢ = 32 in Table 1.
are exactly of this form and it is easy to verify that there are no such 5-blocks in
other orbits.

The constructed 4-(33,5,4) design is only one orbit of 5-sets by action of
PGL(2,32). Tt is stated in [4] that a design with the same parameters arises by
action of the 4-homogeneous group PGamal(2,32), which acts block transitively
in such a way that each orbit of 5-sets 1s a 4-design.

Suppose that a 4-(¢ + 1,5, A1) design is a union U; of orbits of b-sets. If
another 4-(¢ + 1,5, Az) design is a union Us, which is disjoint with Uy, then it
immediately follows that the sum Uy + Us is a 4-(¢ + 1,5, A1 + A2) design. In this
way is obtained the 4-(33,5,9) design.

Finally, if a4-(¢+1, 5, A) design corresponds to a union of orbits of 5-sets, then
the union of complementary orbits corresponds to a 4-(¢+1,5, ¢—3—A) design. One
might say that this second design is obtained by “substracting” the first one from
the trivial 4-(¢ + 1,5, ¢ — 3) design. This kind of substraction (complementation)
does not depend on orbits by action of a group; it can be applied directly to the
blocks of arbitrary design. The number of constructed 4-designs is doubled (from
4 to 8) by applying this operation.
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