A SEARCH FOR 4-DESIGNS ARISING BY ACTION OF $P G L(2, q)^{1}$

Dragan M. Acketa, Vojislav Mudrinski, Dura Paunić

A complete search for $4-(q+1,5, \lambda)$ designs arising by action of groups $P G L(2, q)$ is made, for all prime powers $q \leq 32$. The search is based on the use of ($\lambda_{i j}$) matrices, which are constructed by using 3 -homogenicity of this action. The elements of these matrices are numbers of inclusions of 4 -subsets of the groundset within 5 -subsets, partitioned w.r.t. the orbits. It turns out that there exist only eight designs of the considered type, two for $q=17$ and six for $q=32$.

1. INTRODUCTION AND CONSTRUCTION

An n-set is a set of cardinality n. A $t-(v, k, \lambda)$ design [3] is an incidence structure on v points, which consists of some k-sized sets of points (called blocks) without repetitions and satisfies the property that each t points are contained in exactly λ blocks. As usual, $G F(q)$ denotes the Galois field associated to a prime power q. $P G L(2, q)$ denotes the group of projective linear transformations over $(G F(q))^{2}$. Each element of $P G L(2, q)$ can be represented by a regular 2×2 matrix of the form $M=\left(\begin{array}{cc}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right)$, which acts as follows:

$$
\left.\left(\bar{x}_{1}, \bar{x}_{2}\right)=\left(x_{1}, x_{2}\right) \cdot\left(\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right) \quad \text { (equivalently, } \bar{x}=x^{M}\right)
$$

where $\left(a_{1}, a_{2}\right), x=\left(x_{1}, x_{2}\right)$ and $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}\right)$ are general elements of $(G F(q))^{2}$, while (b_{1}, b_{2}) is required to belong to the canonical set

$$
C(q)=\{(0,1),(1,1), \ldots,(q-1,1),(1,0)\}
$$

[^0]It is known that $P G L(2, q)$ acts 3 -transitively on the ground-set

$$
V(q)=\{0,1, \ldots, q-1\} \cup\{\infty\} .
$$

Consider the mapping $\beta: V(q) \longrightarrow C(q)$ defined by $x^{\beta}=(x, 1)$ for $x \in$ $\{0,1, \ldots, q-1\}$ and $\infty^{\beta}=(1,0)$. The image $\bar{x} \in V(q)$ of an element $x \in V(q)$ under an element M of $P G L(2, q)$ is determined as $\bar{x}=x^{\beta M \gamma \beta^{-1}}$, where γ maps each non-zero element y of $(G F(q))^{2}$ onto the unique element of $C(q)$, which belongs to the 1-dimensional subspace determined by y.

The group $P G L(2, q)$ can be also represented by an array of size $\left(q^{3}-q\right) \times q$, each row of which is a permutation of $V(q)$. This representation turned out to be inefficient in implementation of the algorithm, it was tried and abandoned. The 2×2 matrix representation of elements of $\operatorname{PGL}(2, q)$, mentioned in the beginning of the paper, was used for the computations.

Let T and B denote the families of all those subsets of $V(q)$, which are of cardinalities 4 and 5 respectively and let T_{1}, \ldots, T_{m} and B_{1}, \ldots, B_{n} denote the orbits of T and B by action of $P G L(2, q)$.

It is easy to show for each $i \in\{1, \ldots, m\}$ and for each $j \in\{1, \ldots, n\}$ (details can be found in [1) that each 4 -subset of T_{i} is contained into the same number (denoted by $\lambda_{i j}$) of 5 -subsets of B_{j}. Conversely, each 5 -subset of B_{j} is contained into the same number (denoted by $h_{i j}$) of 4 -subsets of T_{i}. It holds that $\lambda_{i 1}+\cdots+\lambda_{i n}=$ $q-3=\lambda$ of the trivial design, for each $i \in\{1, \ldots, m\}$ and $h_{1 j}+\cdots+h_{m j}=5$, for each $j \in\{1, \ldots, n\}$.

The 3 -homogenicity of the action of $P G L(2, q)$ enables a reduction of the search for orbits of 4 -subsets and 5 -subsets of $V(q)$ to those of these subsets, which contain a fixed 3 -subset S. This leads to an efficient method (described in more details in [1]) for computing the ($\lambda_{i j}$) matrix. When looking for the ($h_{i j}$) matrix, the considerations should also include those 4 -subsets of $V(q)$, which have 2intersections with S. The i-th row of the ($\lambda_{i j}$) matrix (the j-th column of the ($h_{i j}$) matrix) can be calculated by considering the partition w.r.t. orbits of 5 -supersets (4-subsets) of a representative of $T_{i}\left(B_{j}\right.$.)

Counting the incidencies between 4 -subsets in T_{i} and 5 -subsets in B_{j} in two different manners, it immediately follows that $\left|T_{i}\right| \cdot \lambda_{i j}=\left|B_{j}\right| \cdot h_{i j}$. This relationship enables the computation of one of the two matrices from the other, provided that the orbit cardinalities are known.
Example. The ($h_{i j}$) matrix for $q=32$, with the same order of orbits as with the ($\lambda_{i j}$) matrix in Table 1., has the following outlook:

4	1	2	1	1	1	1	0	0	0	0
1	1	0	2	1	1	0	4	1	0	0
0	0	1	1	1	1	4	0	2	1	0
0	2	1	1	1	0	0	0	1	4	1
0	1	1	0	1	2	0	1	1	0	4

Each one of the five orbits of 4 -subsets is of cardinality 267 . The 1st, the 7th, the 8 th, the 10 th and the 11 th orbit of 5 -subsets is of cardinality 15 (these five orbits
will have a special role in Section 2), while the remaining six orbits of 5 -subsets are of cardinality 60 .

Having the ($\lambda_{i j}$) matrix, the construction itself runs as follows:
A search for those non-trivial 4-designs is made, the blocks of which are all the 5 -subsets of orbits $B_{j_{1}}, \ldots, B_{j_{s}}$, for some proper subset $\left\{j_{1}, \ldots, j_{s}\right\}$ of $\{1, \ldots, n\}$. The condition for existence of such a 4-design is that the sums $\lambda_{i j_{1}}+\cdots+\lambda_{i j_{s}}$ are equal for all $i \in\{1, \ldots, m\}$; if this is the case, then the common value of these sums is λ of the design.

Thus a non-trivial 4-design corresponds to a proper subset P of the column set of the $\left(\lambda_{i j}\right)$ matrix, with the property that all the row sums of the submatrix determined by P are equal. A search for such a submatrix can be performed, e.g., by applying the Gray code to the column set.

2. RESULTS

The results of the performed computer search for 4 -designs, which arise by action of $P G L(2, q)$, can be summarized as follows:
Theorem 1. Action of the group $P G L(2, q)$ for prime powers $q \leq 32$ gives exactly eight $4-(q+1,5, \lambda)$ designs, for the pairs (q, λ) equal to $(17,4),(17,10),(32,4)$, $(32,5),(32,9),(32,20),(32,24)$ and $(32,25)$.
Proof. The ($\lambda_{i j}$) matrices for $q \leq 32$, obtained by the above method, are shown in Table 1. The value of q is given in the upper left direction with respect to a matrix. A row of a $\left(\lambda_{i j}\right)$ matrix denoted by (a) corresponds to the orbit of 4 -sets having the representative $\{0,1, a, \infty\}$. Similarly, a column denoted by (a, b) corresponds to the orbit of 5 -sets having the representative $\{0,1, a, b, \infty\}$:

Table 1. ($\lambda_{i j}$) matrices for $q \leq 32$

Table 1 (continued)

17 \| $(2,3)(2,5)(2,6)(3,7)$						$19 \mid(2,3)(2,5)(3,4)(3,8)(4,5)$					
(2)	8	2	4	0		(2)	8	8	0	0	0
(3)	4	0	4	6		(3)	4	4	6	2	0
(4)	2	4	4	4		(4) \|	2	8	4	0	2
						(8)	0	12	0	4	0
$23 \mid(2,3)(2,5)(2,6)(3,4)(3,7)(3,14)$											
(2)	8	4	8	0	0	0					
(3)	4	0	4	4	6	2					
(4)	2	4	4	6	0	4					
(5)	0	4	8	0	4	4					
$25 \mid(2,3)(2,5)(2,6)(2,10)(5,7)(5,8)(6,7)(7,8)$											
(2)	2	8	8	4	0	0	0	0			
(5)	0	4	4	4	6	4	0	0			
(6)	0	4	4	4	0	4	6	0			
(7)	0	8	4	0	4	0	4	2			
(8)	0	0	12	0	0	6	0	4			
$27 \mathrm{l}(2,3)(3,4)(3,5)(3,7)(3,10)(3,15)(4,6)(4,11)$											
(2)	24	0	0	0	0	0	0	0			
(3)	4	6	4	4	4	2	0	0			
(4)	4	4	0	0	4	4	6	2			
(5)	4	0	4	0	8	4	0	4			
(11)	4	0	2	6	4	0	4	4			

Table 1 (continued)

(2)	8	8	8	4	0	0	0	0	0	0	0
(3)	4	0	4	0	4	8	4	4	0	0	0
(4)	2	4	0	4	4	0	2	8	4	0	0
(5)	0	4	4	4	2	8	0	0	4	2	0
(6)	0	0	12	0	0	0	0	12	0	4	0
(12)	0	8	4	0	0	4	4	4	2	0	2
$32 \mid(2,3)(2,5)(2,6)(2,8)(2,9)(2,11)(6,7)(4,5)(4,17)(14,15)(16,17)$											
(2)	4	4	8	4	4	4	1	0	0	0	
(4)	1	4	0	8	4	4	0	4	4	0	
(6)	0	0	4	4	4	4	4	0	8	1	
(14)	0	8	4	4	4	0	0	0	4	4	
(16)	0	4	4	0	4	8	0	1	4	0	

It is readily checked that a proper submatrix, which consists of whole columns and has the equal sums in all the rows, does exist only for $q=17$ and $q=32$. Three such submatrices, corresponding to the pairs $(17,4),(32,4)$ and $(32,5)$, are shown in Table 2 (the submatrices consist of the rounded columns). The submatrix composed of all the columns of the last two submatrices leads to the pair $(32,9)$. The remaining four designs mentioned in the theorem correspond to the submatrices, which are complementary w.r.t. the first four.

Table 2. 4-designs recognized within $\left(\lambda_{i j}\right)$ matrices

3. SOME OBSERVATIONS ON THE CONSTRUCTED 4-DESIGNS

The $4-(18,5,4)$ design was primarily constructed by W. O. Alltop by a somewhat more specific method, which also uses the orbits of 4 -subsets and 5 subsets by action of $P G L(2, q)$. This construction was described in [3], Example 8.5 , pp. 186-187. It might be said that the above described method, which is based the use of ($\lambda_{i j}$) matrices, is an improvement of the Alltop's method. This improvement enables a complete search for 4-designs which arise by action of $\operatorname{PGL}(2, q)$.

The constructed $4-(33,5,5)$ design is recognized as the first member of an infinite class (also constructed by W. O. Alltop in [2]) of $4-(q+1,5,5)$ designs, where q is of the form 2^{k} for odd numbers $k \geq 5$. More precisely, the families of blocks of designs in this class consist of those orbits by action of $P G L(2, q)$, which have a representative of the form $\{0,1, a, a+1, \infty\}$, for some $a \in\{2,3, \ldots, q-1\}$. The given representatives of the $1 ., 7 ., 8 ., 10$. and 11 . orbit for $q=32$ in Table 1 . are exactly of this form and it is easy to verify that there are no such 5 -blocks in other orbits.

The constructed 4 - $(33,5,4)$ design is only one orbit of 5 -sets by action of $P G L(2,32)$. It is stated in [4] that a design with the same parameters arises by action of the 4 -homogeneous group $P \operatorname{Gama} L(2,32)$, which acts block transitively in such a way that each orbit of 5 -sets is a 4 -design.

Suppose that a $4-\left(q+1,5, \lambda_{1}\right)$ design is a union U_{1} of orbits of 5 -sets. If another $4-\left(q+1,5, \lambda_{2}\right)$ design is a union U_{2}, which is disjoint with U_{1}, then it immediately follows that the sum $U_{1}+U_{2}$ is a $4-\left(q+1,5, \lambda_{1}+\lambda_{2}\right)$ design. In this way is obtained the $4-(33,5,9)$ design.

Finally, if a $4-(q+1,5, \lambda)$ design corresponds to a union of orbits of 5 -sets, then the union of complementary orbits corresponds to a $4-(q+1,5, q-3-\lambda)$ design. One might say that this second design is obtained by "substracting" the first one from the trivial $4-(q+1,5, q-3)$ design. This kind of substraction (complementation) does not depend on orbits by action of a group; it can be applied directly to the blocks of arbitrary design. The number of constructed 4 -designs is doubled (from 4 to 8) by applying this operation.

REFERENCES

1. D.M. Acketa, V. Mudrinski: A 4-design on 38 points (submitted).
2. W. O. Alltop: An infinite class of 4-designs. J. Comb. Th. 6 (1969), 320-322.
3. T. Beth, D. Jungnickel, B. Lenz: Design theory. Bibliographisches Institut Mannheim/Wien/Zürich, 1985.
4. V. Tonchev: Private communication.

Institute of Mathematics,
(Received June 24, 1994)
University of Novi Sad,
Trg D. Obradovića 4, 21000 Novi Sad, Yugoslavia

[^0]: ${ }^{1}$ Research financed by the Institute of Mathematics, Novi Sad 1991 Mathematics Subject Classification: 05B30

