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A SEARCH FOR 4-DESIGNS ARISING BY

ACTION OF PGL(2; q)1

Dragan M. Acketa, Vojislav Mudrinski, D- ura Pauni�c

A complete search for 4-(q+1;5; �) designs arising by action of groups PGL(2; q)

is made, for all prime powers q � 32. The search is based on the use of (�ij)

matrices, which are constructed by using 3-homogenicity of this action. The

elements of these matrices are numbers of inclusions of 4-subsets of the ground-

set within 5-subsets, partitioned w.r.t. the orbits. It turns out that there exist

only eight designs of the considered type, two for q = 17 and six for q = 32.

1. INTRODUCTION AND CONSTRUCTION

An n�set is a set of cardinality n. A t-(v; k; �) design [3] is an incidence
structure on v points, which consists of some k-sized sets of points (called blocks)
without repetitions and satis�es the property that each t points are contained in
exactly � blocks. As usual, GF (q) denotes the Galois �eld associated to a prime
power q. PGL(2; q) denotes the group of projective linear transformations over
(GF (q))2. Each element of PGL(2; q) can be represented by a regular 2�2 matrix

of the form M =

�
a1 a2
b1 b2

�
, which acts as follows:

(x1; x2) = (x1; x2) �

�
a1 a2
b1 b2

�
(equivalently; x = xM );

where (a1; a2); x = (x1; x2) and x = (x1; x2) are general elements of (GF (q))2,
while (b1; b2) is required to belong to the canonical set

C(q) = f(0; 1); (1; 1); : : : ; (q � 1; 1); (1; 0)g:
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It is known that PGL(2; q) acts 3-transitively on the ground-set

V (q) = f0; 1; : : :; q � 1g [ f1g:

Consider the mapping � : V (q) �! C(q) de�ned by x� = (x; 1) for x 2

f0; 1; : : :; q � 1g and 1� = (1; 0). The image x 2 V (q) of an element x 2 V (q)

under an element M of PGL(2; q) is determined as x = x�M��1 ; where  maps
each non-zero element y of (GF (q))2 onto the unique element of C(q), which belongs
to the 1-dimensional subspace determined by y.

The group PGL(2; q) can be also represented by an array of size (q3� q)� q;

each row of which is a permutation of V (q). This representation turned out to be
ine�cient in implementation of the algorithm, it was tried and abandoned. The
2� 2 matrix representation of elements of PGL(2; q); mentioned in the beginning
of the paper, was used for the computations.

Let T and B denote the families of all those subsets of V (q); which are of
cardinalities 4 and 5 respectively and let T1; : : : ; Tm and B1; : : : ; Bn denote the
orbits of T and B by action of PGL(2; q).

It is easy to show for each i 2 f1; : : : ;mg and for each j 2 f1; : : : ; ng (details
can be found in [1) that each 4-subset of Ti is contained into the same number
(denoted by �ij) of 5-subsets ofBj . Conversely, each 5-subset ofBj is contained into
the same number (denoted by hij) of 4-subsets of Ti. It holds that �i1+ � � �+�in =
q� 3 = � of the trivial design, for each i 2 f1; : : : ;mg and h1j + � � �+ hmj = 5; for
each j 2 f1; : : : ; ng.

The 3-homogenicity of the action of PGL(2; q) enables a reduction of the
search for orbits of 4-subsets and 5-subsets of V (q) to those of these subsets, which
contain a �xed 3-subset S: This leads to an e�cient method (described in more
details in [1]) for computing the (�ij) matrix. When looking for the (hij) ma-
trix, the considerations should also include those 4-subsets of V (q); which have 2-
intersections with S. The i-th row of the (�ij) matrix (the j-th column of the (hij)
matrix) can be calculated by considering the partition w.r.t. orbits of 5-supersets
(4-subsets) of a representative of Ti (Bj :)

Counting the incidencies between 4-subsets in Ti and 5-subsets in Bj in two
di�erent manners, it immediately follows that jTij ��ij = jBj j �hij: This relationship
enables the computation of one of the two matrices from the other, provided that
the orbit cardinalities are known.

Example. The (hij) matrix for q = 32; with the same order of orbits as with the
(�ij) matrix in Table 1., has the following outlook:

4 1 2 1 1 1 1 0 0 0 0

1 1 0 2 1 1 0 4 1 0 0

0 0 1 1 1 1 4 0 2 1 0

0 2 1 1 1 0 0 0 1 4 1

0 1 1 0 1 2 0 1 1 0 4

Each one of the �ve orbits of 4-subsets is of cardinality 267. The 1st, the 7th, the
8th, the 10th and the 11th orbit of 5-subsets is of cardinality 15 (these �ve orbits
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will have a special role in Section 2), while the remaining six orbits of 5-subsets are
of cardinality 60.

Having the (�ij) matrix, the construction itself runs as follows:

A search for those non-trivial 4-designs is made, the blocks of which are all the
5-subsets of orbits Bj1 ; : : : ; Bjs ; for some proper subset fj1; : : : ; jsg of f1; : : : ; ng.
The condition for existence of such a 4-design is that the sums �ij1 + � � �+ �ijs are
equal for all i 2 f1; : : : ;mg; if this is the case, then the common value of these sums
is � of the design.

Thus a non-trivial 4-design corresponds to a proper subset P of the column
set of the (�ij) matrix, with the property that all the row sums of the submatrix
determined by P are equal. A search for such a submatrix can be performed, e.g.,
by applying the Gray code to the column set.

2. RESULTS

The results of the performed computer search for 4-designs, which arise by
action of PGL(2; q), can be summarized as follows:

Theorem 1. Action of the group PGL(2; q) for prime powers q � 32 gives exactly

eight 4-(q + 1; 5; �) designs, for the pairs (q; �) equal to (17; 4); (17; 10); (32; 4);
(32; 5); (32; 9); (32; 20); (32; 24) and (32; 25).

Proof. The (�ij) matrices for q � 32; obtained by the above method, are shown in
Table 1. The value of q is given in the upper left direction with respect to a matrix.
A row of a (�ij) matrix denoted by (a) corresponds to the orbit of 4-sets having
the representative f0; 1; a;1g. Similarly, a column denoted by (a; b) corresponds
to the orbit of 5-sets having the representative f0; 1; a; b;1g :

Table 1. (�ij) matrices for q � 32

5 | (2,3) 7 | (2,3) 8 | (2,3)

------------ ------------ ------------

(2) | 2 (2) | 4 (2) | 5

(3) | 4

9 | (2,3)(3,5) 11 | (2,3)(3,4)

----------------- -----------------

(2) | 6 0 (2) | 8 0

(3) | 4 2 (3) | 6 2

13 | (2,3)(2,6)(3,4) 16 | (2,3)(2,5)(2,6)(6,7)

---------------------- ---------------------------

(2) | 8 2 0 (2) | 4 1 8 0

(3) | 4 4 2 (4) | 1 4 8 0

(4) | 6 0 4 (6) | 0 0 12 1
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Table 1 (continued)

17 | (2,3)(2,5)(2,6)(3,7) 19 | (2,3)(2,5)(3,4)(3,8)(4,5)

--------------------------- --------------------------------

(2) | 8 2 4 0 (2) | 8 8 0 0 0

(3) | 4 0 4 6 (3) | 4 4 6 2 0

(4) | 2 4 4 4 (4) | 2 8 4 0 2

(8) | 0 12 0 4 0

23 | (2,3)(2,5)(2,6)(3,4)(3,7)(3,14)

-------------------------------------

(2) | 8 4 8 0 0 0

(3) | 4 0 4 4 6 2

(4) | 2 4 4 6 0 4

(5) | 0 4 8 0 4 4

25 | (2,3)(2,5)(2,6)(2,10)(5,7)(5,8)(6,7)(7,8)

-----------------------------------------------

(2) | 2 8 8 4 0 0 0 0

(5) | 0 4 4 4 6 4 0 0

(6) | 0 4 4 4 0 4 6 0

(7) | 0 8 4 0 4 0 4 2

(8) | 0 0 12 0 0 6 0 4

27 | (2,3)(3,4)(3,5)(3,7)(3,10)(3,15)(4,6)(4,11)

--------------------------------------------------

(2) | 24 0 0 0 0 0 0 0

(3) | 4 6 4 4 4 2 0 0

(4) | 4 4 0 0 4 4 6 2

(5) | 4 0 4 0 8 4 0 4

(11) | 4 0 2 6 4 0 4 4

29 | (2,3)(2,5)(2,6)(2,13)(3,4)(3,7)(3,11)(3,13)(4,9)(5,6)

------------------------------------------------------------

(2) | 8 8 8 2 0 0 0 0 0 0

(3) | 4 0 4 0 4 8 2 4 0 0

(4) | 2 8 0 0 4 4 4 0 4 0

(5) | 0 4 8 0 0 4 4 2 2 2

(9) | 0 4 4 4 2 4 0 4 4 0
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Table 1 (continued)

31 | (2,3)(2,5)(2,6)(2,8)(3,4)(3,7)(3,8)(3,10)(4,9)(5,6)(12,13)

-----------------------------------------------------------------

(2) | 8 8 8 4 0 0 0 0 0 0 0

(3) | 4 0 4 0 4 8 4 4 0 0 0

(4) | 2 4 0 4 4 0 2 8 4 0 0

(5) | 0 4 4 4 2 8 0 0 4 2 0

(6) | 0 0 12 0 0 0 0 12 0 4 0

(12) | 0 8 4 0 0 4 4 4 2 0 2

32 | (2,3)(2,5)(2,6)(2,8)(2,9)(2,11)(6,7)(4,5)(4,17)(14,15)(16,17)

-------------------------------------------------------------------

(2) | 4 4 8 4 4 4 1 0 0 0 0

(4) | 1 4 0 8 4 4 0 4 4 0 0

(6) | 0 0 4 4 4 4 4 0 8 1 0

(14) | 0 8 4 4 4 0 0 0 4 4 1

(16) | 0 4 4 0 4 8 0 1 4 0 4

It is readily checked that a proper submatrix, which consists of whole columns
and has the equal sums in all the rows, does exist only for q = 17 and q = 32. Three
such submatrices, corresponding to the pairs (17; 4); (32; 4) and (32; 5); are shown
in Table 2 (the submatrices consist of the rounded columns). The submatrix com-
posed of all the columns of the last two submatrices leads to the pair (32; 9). The
remaining four designs mentioned in the theorem correspond to the submatrices,
which are complementary w.r.t. the �rst four. 2

Table 2. 4-designs recognized within (�ij) matrices

|-| |-|

8 2 |4| 0 4 4 8 4 |4| 4 1 0 0 0 0

4 0 |4| 6 1 4 0 8 |4| 4 0 4 4 0 0

2 4 |4| 4 0 0 4 4 |4| 4 4 0 8 1 0

|-| 0 8 4 4 |4| 0 0 0 4 4 1

0 4 4 0 |4| 8 0 1 4 0 4

4-(18,5,4) |-|

4-(33,5,4)

|-| |----| |----|

|4| 4 8 4 4 4 |1 0| 0 |0 0|

|1| 4 0 8 4 4 |0 4| 4 |0 0|

|0| 0 4 4 4 4 |4 0| 8 |1 0|

|0| 8 4 4 4 0 |0 0| 4 |4 1|

|0| 4 4 0 4 8 |0 1| 4 |0 4| 4-(33,5,5)

|-| |----| |----|
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3. SOME OBSERVATIONS ON THE CONSTRUCTED 4-DESIGNS

The 4-(18; 5; 4) design was primarily constructed by W. O. Alltop by a
somewhat more speci�c method, which also uses the orbits of 4-subsets and 5-
subsets by action of PGL(2; q). This construction was described in [3], Example
8.5, pp. 186{187. It might be said that the above described method, which is based
the use of (�ij) matrices, is an improvement of theAlltop's method. This improve-
ment enables a complete search for 4-designs which arise by action of PGL(2; q).

The constructed 4-(33; 5; 5) design is recognized as the �rst member of an
in�nite class (also constructed by W. O. Alltop in [2]) of 4-(q + 1; 5; 5) designs,
where q is of the form 2k for odd numbers k � 5. More precisely, the families of
blocks of designs in this class consist of those orbits by action of PGL(2; q), which
have a representative of the form f0; 1; a; a+ 1;1g, for some a 2 f2; 3; :::; q� 1g.
The given representatives of the 1., 7., 8., 10. and 11. orbit for q = 32 in Table 1.
are exactly of this form and it is easy to verify that there are no such 5-blocks in
other orbits.

The constructed 4-(33; 5; 4) design is only one orbit of 5-sets by action of
PGL(2; 32). It is stated in [4] that a design with the same parameters arises by
action of the 4-homogeneous group PGamaL(2; 32), which acts block transitively
in such a way that each orbit of 5-sets is a 4-design.

Suppose that a 4-(q + 1; 5; �1) design is a union U1 of orbits of 5-sets. If
another 4-(q + 1; 5; �2) design is a union U2, which is disjoint with U1, then it
immediately follows that the sum U1 + U2 is a 4-(q + 1; 5; �1+ �2) design. In this
way is obtained the 4-(33; 5; 9) design.

Finally, if a 4-(q+1; 5; �) design corresponds to a union of orbits of 5-sets, then
the union of complementary orbits corresponds to a 4-(q+1; 5; q�3��) design. One
might say that this second design is obtained by \substracting" the �rst one from
the trivial 4-(q + 1; 5; q � 3) design. This kind of substraction (complementation)
does not depend on orbits by action of a group; it can be applied directly to the
blocks of arbitrary design. The number of constructed 4-designs is doubled (from
4 to 8) by applying this operation.
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