Univ. Beograd. Publ. Elektrotehn. Fak.

A NOTE ON SCHWARZ'S INEQUALITY

Sever Silvestru Dragomir

Some improvement of the well-known Schwarz inequality in inner product spaces are given.

1. Let X be a linear space over the real or complex number field \mathbf{K}. A mapping (,) : X $\times X \rightarrow \mathbf{K}$ will be called positive hermitian form if the following conditions are satisfied:
(i) $\quad(\alpha x+\beta y, z)=\alpha(x, z)+\beta(y, z)$ for all x, y, z in X and α, β in \mathbf{K};
(ii) $(y, x)=\overline{(x, y)}$ for all x, y in X;
(iii) $(x, x) \geq 0$ for all x in X.

It is well-known that, if $($,$) is as above and \|x\|:=[(x, x)]^{1 / 2}, x \in X$, denotes the semi-norm associated to this norm, then the following inequality (called in literature as the Schwarz inequality)

$$
\begin{equation*}
\|x\|\|y\| \geq|(x, y)| \quad \text { for all } x, y \text { in } X \tag{1}
\end{equation*}
$$

holds.
The main purpose of this note is to improve this result as in the sequel.
2. We start to the following result:

Theorem. Let (,) be a positive hermitian form and $\left\{(,)_{i}\right\}_{i \in I}$ a family of such functionals so that:

$$
\begin{equation*}
\|x\|^{2} \geq \int_{i \in I}\|x\|_{i}^{2} \quad \text { for all } x \text { in } X \tag{2}
\end{equation*}
$$

Then one has the inequality:

[^0]\[

$$
\begin{equation*}
\|x\|\|y\|-|(x, y)| \geq \int_{i \in I}\left[\|x\|_{i}\|y\|_{i}-\left|(x, y)_{i}\right|\right] \geq 0 \tag{3}
\end{equation*}
$$

\]

for all x, y in X.
Proof. Let H be a finite part of I. If we put:

$$
(x, y)_{H}:=(x, y)-\sum_{i \in H}(x, y)_{i}, \quad x, y \in X
$$

then we observe, by (2), that $(,)_{H}$ is also a positive hermitian form. Applying Schwarz inequality (1) for (, $)_{H}$, we deduce that:

$$
\begin{equation*}
\left(\|x\|^{2}-\sum_{i \in H}\|x\|_{i}^{2}\right)\left(\|y\|^{2}-\sum_{i \in H}\|y\|_{i}^{2}\right) \geq\left|(x, y)-\sum_{i \in H}(x, y)_{i}\right|^{2} \tag{4}
\end{equation*}
$$

for all x, y in x.
On the other hand, AczÉL's inequality [6] yields that

$$
\begin{equation*}
\left(\|x\|\|y\|-\sum_{i \in H}\|x\|_{i}\|y\|_{i}\right)^{2} \geq\left(\|x\|^{2}-\sum_{i \in H}\|x\|_{i}^{2}\right)\left(\|y\|^{2}-\sum_{i \in H}\|y\|_{i}^{2}\right) \tag{5}
\end{equation*}
$$

for all x, y in X, and since

$$
\|x\|\|y\| \geq\left(\sum_{i \in H}\|x\|_{i}^{2} \sum_{i \in H}\|y\|_{i}^{2}\right)^{1 / 2} \geq \sum_{i \in H}\|x\|_{i}\|y\|_{i}
$$

hence from (4) and (5) we get:

$$
\begin{aligned}
& \left\|x\left|\left|\|y\|-\sum_{i \in H}\|x\|_{i}\|y\|_{i}=|\|x\||\right| y\left\|-\sum_{i \in H}\right\| x\left\|_{i}| | y\right\|_{i}\right|\right. \\
\geq & \left|(x, y)-\sum_{i \in H}(x, y)_{i}\right| \geq\left||(x, y)|-\left|\sum_{i \in H}(x, y)_{i}\right|\right| \\
\geq & |(x, y)|-\left|\sum_{i \in H}(x, y)_{i}\right| \geq|(x, y)|-\sum_{i \in H}\left|(x, y)_{i}\right|
\end{aligned}
$$

which implies that:

$$
||x||||y||-|(x, y)| \geq \sum_{i \in H}\left[| | x\left\|_{i}| | y\right\|_{i}-\left|(x, y)_{i}\right|\right]
$$

for every x, y in X and for all H a finite part of I. Consequently, the family $\left\{\|x\|_{i}\|y\|_{i}-\left|(x, y)_{i}\right|\right\}_{i \in I}$ is sumable in \mathbf{K} and the inequality (2) holds.

Corollary 1. In the above assumptions, we also have the following refinement of the triangle inequality:

$$
\begin{equation*}
(\|x\|+\|y\|)^{2}-\|x+y\| \geq \int_{i \in I}\left(\left(\|x\|_{i}+\|y\|_{i}\right)^{2}-\|x+y\|_{i}^{2}\right) \geq 0 \tag{6}
\end{equation*}
$$

for every x, y two elements in X.
Proof. By a similar argument to that used in the above theorem, we have the inequality:

$$
\|x\|\|y\|-\operatorname{Re}(x, y) \geq \int_{i \in I}\left(\|x\|_{i}\|y\|_{i}-\operatorname{Re}(x, y)_{i}\right) \geq 0
$$

for all x, y in X. Since

$$
(\|x\|+\|y\|)^{2}-\|x+y\|^{2}=2(\|x\|\|y\|-\operatorname{Re}(x, y))
$$

and

$$
\left(\|x\|_{i}+\|y\|_{i}\right)^{2}-\|x+y\|_{i}^{2}=2\left(\|x\|_{i}\|y\|_{i}-\operatorname{Re}(x, y)_{i}\right)
$$

for all x, y in X, the inequality (6) is thus proven.
Corollary 2. Let (, $)_{1}$ and (, $)_{2}$ be two positive hermitian forms with $\|\cdot\|_{2}$ is greater than $\|\cdot\|_{1}$, i.e., $\|x\|_{2} \geq\|x\|_{1}$ for all x in X. Then:

$$
\|x\|_{2}| | y\left\|_{2}-\left|(x, y)_{2}\right| \geq\right\| x\left\|_{1}| | y\right\|_{1}-\left|(x, y)_{1}\right| \geq 0
$$

for all x, y in X.
Corollary 3. Let $\|\cdot\|_{2}$ and $\|\cdot\|_{1}$ be as above. Then

$$
\left(\|x\|_{2}+\|y\|_{2}\right)^{2}-\|x+y\|_{2}^{2} \geq\left(\|x\|_{1}+\|y\|_{1}\right)^{2}-\|x+y\|_{1}^{2} \geq 0
$$

for all x, y in X.
Further on, we will give some natural applications of these results.
Applications. a. Let $(X ;()$,$) be an inner product space and A: X \rightarrow X$ is a bounded linear operator on X. Denote $\|A\|:=\sup \{\|A x\|,\|x\| \leq 1\}$. Then the inequaility:

$$
\|A\|^{2}(\|x\|\|y\|-|(x, y)|) \geq\|A x\|\|A y\|-|(A x, A y)| \geq 0
$$

holds for all x, y in X.
The proof follows by Corollary 2 for $(x, y)_{2}:=\|A\|^{2}(x, y)$ and $(x, y)_{1}:=$ $(A x, A y), x, y \in X$.
b. Let $A: X \rightarrow X$ be a linear operator on X so that $\|A x\| \geq \lambda\|x\|$ for all x in $X(\lambda>0)$. Then:

$$
\|A x\|\|A y\|-|(A x, A y)| \geq \lambda^{2}(\|x\|\|y\|-|(x, y)|) \geq 0
$$

for all x, y in X.
The proof is obvious from Corollary 2 for $(x, y)_{2}:=(A x, A y)$ and $(x, y)_{1}:=$ $\lambda^{2}(x, y)$ with $x, y \in X$.
c. Suppose that $A: X \rightarrow X$ is symmetric, i.e. $(A x, y)=(y, A x)$ for all x, y in X and positive definite with the constant $m>0$, i.e., $(A x, x) \geq m\|x\|^{2}$ for all x in X. Then the inequality:

$$
(A x, x)^{1 / 2}(A y, y)^{1 / 2}-|(A x, y)| \geq m[\|x\|\|y\|-|(x, y)|] \geq 0
$$

holds for every x, y in X.
The proof follows by Corollary 2 for the positive hermitian forms: $(x, y)_{2}:=$ $(A x, y)$ and $(x, y)_{1}:=m(x, y), x, y \in X$ and we will omit the details.
d. Suppose that $\left(e_{i}\right)_{i \in I}$ is an orthogonal family of vectors in the inner product space $(X ;()$,$) , i.e., \left(e_{i}, e_{j}\right)=\delta_{i j}, \quad i, j \in I$. Then one has the following refinement of Schwarz inequality:

$$
||x||\left|\left|y \|-|(x, y)| \geq\left(\int_{i \in I}\left|\left(x, e_{i}\right)\right|^{2}\right)^{1 / 2}\left(\int_{i \in I}\left|\left(y, e_{i}\right)\right|^{2}\right)^{1 / 2}-\left|\int_{i \in I}\left(x, e_{i}\right)\left(e_{i}, y\right)\right| \geq 0\right.\right.
$$

for all x, y in X.
The argument follows by Corollary 2 for the positive hermitian forms: $(x, y)_{2}:=(x, y)$ and $(x, y)_{1}:=\int_{i \in I}\left(x, e_{i}\right)\left(e_{i}, y\right)$, where x, y are in X. The fact that $\|\cdot\|_{2}$ is greater than $\|\cdot\|_{1}$ follows by Bessel's inequality [5]:

$$
\|x\|^{2} \geq \int_{i \in I}\left|\left(x, e_{i}\right)\right|^{2}
$$

which is valid for all x in X.
e. Let x_{i}, y_{i} be complex numbers $(i=1, \ldots, n)$ and $p_{i} \geq q_{i} \geq 0$ for all $i=1, \ldots, n$. Then we have the following inequalities:

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2}\right)^{1 / 2}-\left|\sum_{i=1}^{n} p_{i} x_{i} y_{i}\right| \\
\geq & \left(\sum_{i=1}^{n} q_{i}\left|x_{i}\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} q_{i}\left|y_{i}\right|^{2}\right)^{1 / 2}-\left|\sum_{i=1}^{n} q_{i} x_{i} y_{i}\right| \geq 0 .
\end{aligned}
$$

f. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space consisting of a set Ω, a σ-algebra \mathcal{A} of subsets of Ω and a countably additive and positive measure μ on \mathcal{A} with values in $\mathbf{R} \cup\{\infty\}$. Denote $L^{2}(\Omega, w)$ the Hilbert space of all functions x with complex values which are defined on and are 2-w-integrable on Ω, i.e., $\int_{\Omega} w(s)|x(s)|^{2} \mathrm{~d} \mu(s)<\infty$, where w is a positive measurable function on Ω.

If $w \geq v \geq 0$ and $x, y \in L^{2}(\Omega, w)$ (v is also a measurable function on Ω), then we have the following inequalities:

$$
\begin{aligned}
& \left(\int_{\Omega} w(s)|x(s)|^{2} \mathrm{~d} \mu(s)\right)^{1 / 2}\left(\int_{\Omega} w(s)|y(s)|^{2} \mathrm{~d} \mu(s)\right)^{1 / 2}-\left|\int_{\Omega} w(s) x(s) y(s) \mathrm{d} \mu(s)\right| \\
\geq & \left(\int_{\Omega} v(s)|x(s)|^{2} \mathrm{~d} \mu(s)\right)^{1 / 2}\left(\int_{\Omega} v(s)|y(s)|^{2} \mathrm{~d} \mu(s)\right)^{1 / 2}-\left|\int_{\Omega} v(s) x(s) y(s) \mathrm{d} \mu(s)\right| \geq 0 .
\end{aligned}
$$

For other inequalities connected with Schwarz's result in inner product spaces we refer to $[\mathbf{1}-\mathbf{3}]$, where further references are given.

REFERENCES

1. S. S. Dragomir: A refinement of Cauchy-Schwarz inequality. G.M. Metod (Bucharest) 8 (1987), 94-95.
2. S. S. Dragomir: Some refinement of Cauchy-Schwarz inequality. Ibid. 10 (1989), 93-95.
3. S. S. Dragomir, J. Sándor: Some inequalities in prehilbertian spaces. Studia Univ. "Babes-Bolyai", Mathematica 1, 32 (1987),71-78.
4. T. Furuta: An elementary proof of Hadamard theorem. Math. Vesnik 8 (32) (1971), 267-269.
5. F. T. Metcalf: A Bessel-Schwarz inequality for Gramians and related bounds for determinants. Ann. Math. Pura Appl. 68 (4) (1965), 201-232.
6. D. S. Mitrinović: Analytic Inequalities. Springer Verlag, Berlin-Heidelberg-New York 1970.
7. C. F. Moppert: On the Gram determinant. Quart. J. Math., Oxford, Ser. (2) 10 (1959), 161-164.

Department of Mathematics, (Received September 15, 1992)
Timişoara University,
B-dul V. Pârvan 4,
R-1900 Timişoara,
România

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification: 26D15

