UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. 5 (1994), 3-7

A NOTE ON SCHWARZ'S INEQUALITY

Sever Silvestru Dragomir

Some improvement of the well-known Schwarz inequality in inner product spaces are given.

1. Let X be a linear space over the real or complex number field **K**. A mapping $(,) : X \times X \to \mathbf{K}$ will be called positive hermitian form if the following conditions are satisfied:

(i) $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$ for all x, y, z in X and α, β in **K**;

(ii) $(y, x) = \overline{(x, y)}$ for all x, y in X;

(iii) $(x, x) \ge 0$ for all x in X.

It is well-known that, if (,) is as above and $||x|| := [(x, x)]^{1/2}$, $x \in X$, denotes the semi-norm associated to this norm, then the following inequality (called in literature as the SCHWARZ inequality)

(1)
$$||x|| ||y|| \ge |(x, y)| \quad \text{for all } x, y \text{ in } X$$

holds.

The main purpose of this note is to improve this result as in the sequel.

2. We start to the following result:

Theorem. Let (,) be a positive hermitian form and $\{(,)_i\}_{i \in I}$ a family of such functionals so that:

(2)
$$||x||^2 \ge \int_{i \in I} ||x||_i^2 \text{ for all } x \text{ in } X.$$

Then one has the inequality :

⁰1991 Mathematics Subject Classification: 26D15

(3)
$$||x|| ||y|| - |(x,y)| \ge \int_{i \in I} \left[||x||_i ||y||_i - |(x,y)_i| \right] \ge 0$$

for all x, y in X.

Proof. Let H be a finite part of I. If we put:

$$(x, y)_H := (x, y) - \sum_{i \in H} (x, y)_i, \ x, y \in X,$$

then we observe, by (2), that $(,)_H$ is also a positive hermitian form. Applying SCHWARZ inequality (1) for $(,)_H$, we deduce that:

(4)
$$\left(||x||^2 - \sum_{i \in H} ||x||_i^2\right) \left(||y||^2 - \sum_{i \in H} ||y||_i^2\right) \ge \left|(x, y) - \sum_{i \in H} (x, y)_i\right|^2,$$

for all x, y in x.

On the other hand, ACZÉL's inequality [6] yields that

(5)
$$\left(||x|| ||y|| - \sum_{i \in H} ||x||_i ||y||_i\right)^2 \ge \left(||x||^2 - \sum_{i \in H} ||x||_i^2\right) \left(||y||^2 - \sum_{i \in H} ||y||_i^2\right)$$

for all x, y in X, and since

$$||x|| ||y|| \ge \left(\sum_{i \in H} ||x||_{i}^{2} \sum_{i \in H} ||y||_{i}^{2}\right)^{1/2} \ge \sum_{i \in H} ||x||_{i} ||y||_{i}$$

hence from (4) and (5) we get:

$$\begin{split} ||x|| \, ||y|| - \sum_{i \in H} ||x||_i ||y||_i &= \left| ||x|| \, ||y|| - \sum_{i \in H} ||x||_i ||y||_i \right| \\ \geq \left| (x, y) - \sum_{i \in H} (x, y)_i \right| \geq \left| |(x, y)| - \left| \sum_{i \in H} (x, y)_i \right| \right| \\ \geq |(x, y)| - \left| \sum_{i \in H} (x, y)_i \right| \geq |(x, y)| - \sum_{i \in H} |(x, y)_i|, \end{split}$$

which implies that:

$$||x|| \, ||y|| - |(x, y)| \ge \sum_{i \in H} \left[||x||_i ||y||_i - |(x, y)_i| \right]$$

for every x, y in X and for all H a finite part of I. Consequently, the family $\{||x||_i||y||_i - |(x, y)_i|\}_{i \in I}$ is sumable in **K** and the inequality (2) holds.

Corollary 1. In the above assumptions, we also have the following refinement of the triangle inequality:

(6)
$$\left(||x|| + ||y||\right)^2 - ||x+y|| \ge \int_{i \in I} \left(\left(||x||_i + ||y||_i\right)^2 - ||x+y||_i^2\right) \ge 0$$

for every x, y two elements in X.

Proof. By a similar argument to that used in the above theorem, we have the inequality:

$$|x|| ||y|| - \operatorname{Re}(x, y) \ge \int_{i \in I} \left(||x||_i ||y||_i - \operatorname{Re}(x, y)_i \right) \ge 0$$

for all x, y in X. Since

$$(||x|| + ||y||)^{2} - ||x + y||^{2} = 2(||x|| ||y|| - \operatorname{Re}(x, y))$$

and

$$(||x||_i + ||y||_i)^2 - ||x + y||_i^2 = 2(||x||_i||y||_i - \operatorname{Re}(x, y)_i)$$

for all x, y in X, the inequality (6) is thus proven.

Corollary 2. Let $(,)_1$ and $(,)_2$ be two positive hermitian forms with $|| \cdot ||_2$ is greater than $|| \cdot ||_1$, i.e., $||x||_2 \ge ||x||_1$ for all x in X. Then:

$$||x||_2||y||_2 - |(x,y)_2| \ge ||x||_1||y||_1 - |(x,y)_1| \ge 0$$

for all x, y in X.

Corollary 3. Let $|| \cdot ||_2$ and $|| \cdot ||_1$ be as above. Then

$$\left(||x||_{2} + ||y||_{2}\right)^{2} - ||x + y||_{2}^{2} \ge \left(||x||_{1} + ||y||_{1}\right)^{2} - ||x + y||_{1}^{2} \ge 0,$$

for all x, y in X.

Further on, we will give some natural applications of these results.

Applications. a. Let (X; (,)) be an inner product space and $A : X \to X$ is a bounded linear operator on X. Denote $||A|| := \sup \{||Ax||, ||x|| \le 1\}$. Then the inequality:

$$||A||^{2} (||x|| ||y|| - |(x, y)|) \ge ||Ax|| ||Ay|| - |(Ax, Ay)| \ge 0$$

holds for all x, y in X.

The proof follows by Corollary 2 for $(x, y)_2 := ||A||^2 (x, y)$ and $(x, y)_1 := (Ax, Ay), x, y \in X$.

b. Let $A : X \to X$ be a linear operator on X so that $||Ax|| \ge \lambda ||x||$ for all x in $X \ (\lambda > 0)$. Then:

$$||Ax|| ||Ay|| - |(Ax, Ay)| \ge \lambda^2 (||x|| ||y|| - |(x, y)|) \ge 0$$

for all x, y in X.

The proof is obvious from Corollary 2 for $(x, y)_2 := (Ax, Ay)$ and $(x, y)_1 := \lambda^2(x, y)$ with $x, y \in X$.

c. Suppose that $A : X \to X$ is symmetric, i.e. (Ax, y) = (y, Ax) for all x, y in X and positive definite with the constant m > 0, i.e., $(Ax, x) \ge m||x||^2$ for all x in X. Then the inequality:

$$(Ax, x)^{1/2} (Ay, y)^{1/2} - |(Ax, y)| \ge m [||x|| ||y|| - |(x, y)|] \ge 0$$

holds for every x, y in X.

The proof follows by Corollary 2 for the positive hermitian forms: $(x, y)_2 := (Ax, y)$ and $(x, y)_1 := m(x, y), x, y \in X$ and we will omit the details.

d. Suppose that $(e_i)_{i \in I}$ is an orthogonal family of vectors in the inner product space (X; (,)), i.e., $(e_i, e_j) = \delta_{ij}$, $i, j \in I$. Then one has the following refinement of SCHWARZ inequality:

$$||x|| ||y|| - |(x,y)| \ge \left(\int_{i \in I} |(x,e_i)|^2\right)^{1/2} \left(\int_{i \in I} |(y,e_i)|^2\right)^{1/2} - \left|\int_{i \in I} (x,e_i)(e_i,y)\right| \ge 0$$

for all x, y in X.

The argument follows by Corollary 2 for the positive hermitian forms: $(x, y)_2 := (x, y)$ and $(x, y)_1 := \int_{i \in I} (x, e_i)(e_i, y)$, where x, y are in X. The fact that $|| \cdot ||_2$ is greater than $|| \cdot ||_1$ follows by BESSEL's inequality [5]:

$$||x||^2 \ge \int_{i \in I} |(x, e_i)|^2,$$

which is valid for all x in X.

e. Let x_i, y_i be complex numbers (i = 1, ..., n) and $p_i \ge q_i \ge 0$ for all i = 1, ..., n. Then we have the following inequalities:

$$\left(\sum_{i=1}^{n} p_{i}|x_{i}|^{2}\right)^{1/2} \left(\sum_{i=1}^{n} p_{i}|y_{i}|^{2}\right)^{1/2} - \left|\sum_{i=1}^{n} p_{i}x_{i}y_{i}\right|$$
$$\geq \left(\sum_{i=1}^{n} q_{i}|x_{i}|^{2}\right)^{1/2} \left(\sum_{i=1}^{n} q_{i}|y_{i}|^{2}\right)^{1/2} - \left|\sum_{i=1}^{n} q_{i}x_{i}y_{i}\right| \ge 0$$

f. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space consisting of a set Ω , a σ -algebra \mathcal{A} of subsets of Ω and a countably additive and positive measure μ on \mathcal{A} with values in $\mathbf{R} \cup \{\infty\}$. Denote $L^2(\Omega, w)$ the HILBERT space of all functions x with complex values which are defined on and are 2-w-integrable on Ω , i.e., $\int_{\Omega} w(s) |x(s)|^2 d\mu(s) < \infty$, where w is a positive measurable function on Ω .

If $w \ge v \ge 0$ and $x, y \in L^2(\Omega, w)$ (v is also a measurable function on Ω), then we have the following inequalities:

$$\left(\int_{\Omega} w(s) |x(s)|^2 \,\mathrm{d}\mu(s) \right)^{1/2} \left(\int_{\Omega} w(s) |y(s)|^2 \,\mathrm{d}\mu(s) \right)^{1/2} - \left| \int_{\Omega} w(s) x(s) y(s) \,\mathrm{d}\mu(s) \right|$$

$$\geq \left(\int_{\Omega} v(s) |x(s)|^2 \,\mathrm{d}\mu(s) \right)^{1/2} \left(\int_{\Omega} v(s) |y(s)|^2 \,\mathrm{d}\mu(s) \right)^{1/2} - \left| \int_{\Omega} v(s) x(s) y(s) \,\mathrm{d}\mu(s) \right| \ge 0.$$

For other inequalities connected with SCHWARZ's result in inner product spaces we refer to [1-3], where further references are given.

REFERENCES

- 1. S. S. DRAGOMIR: A refinement of Cauchy-Schwarz inequality. G.M. Metod (Bucharest) 8 (1987), 94–95.
- 2. S. S. DRAGOMIR: Some refinement of Cauchy-Schwarz inequality. Ibid. 10 (1989), 93-95.
- 3. S. S. DRAGOMIR, J. SÁNDOR: Some inequalities in prehilbertian spaces. Studia Univ. "Babes-Bolyai", Mathematica 1, 32 (1987),71-78.
- T. FURUTA: An elementary proof of Hadamard theorem. Math. Vesnik 8 (32) (1971), 267-269.
- F. T. METCALF: A Bessel-Schwarz inequality for Gramians and related bounds for determinants. Ann. Math. Pura Appl. 68 (4) (1965), 201-232.
- D. S. MITRINOVIĆ: Analytic Inequalities. Springer Verlag, Berlin-Heidelberg-New York 1970.
- C. F. MOPPERT: On the Gram determinant. Quart. J. Math., Oxford, Ser. (2) 10 (1959), 161-164.

(Received September 15, 1992)

Department of Mathematics, Timişoara University, B-dul V. Pârvan 4, R-1900 Timişoara, România