ON GRAPHS WHOSE SECOND LARGEST EIGENVALUE DOES NOT EXCEED $\sqrt{2}-1$

Miroslav Petrović

Abstract

Graphs whose second largest eigenvalue does not exceed $\sqrt{2}-1$ are characterized.

1. INTRODUCTION

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}\right)$ be the eigenvalues of a graph G on n vertices.

The second largest eigenvalue $\lambda_{2}=\lambda_{2}(G)$ of a graph G appears several times in the literature. Of special importance are graphs for which $\lambda_{2}(G)$ has a small value.
A. J. Hoffman posed the problem of characterizing graphs with the second largest eigenvalue not greater than 1 . An explicit characterization of connected bipartite graphs with the property $\lambda_{2}(G) \leq 1$ is given in [4].
P. Cao and H. Yuan [1] determine graphs without isolated vertices with the property $0<\lambda_{2}(G)<1 / 3$. They also posed the problem of characterizing graphs with the property $1 / 3<\lambda_{2}(G)<(\sqrt{5}-1) / 2$.

In this paper all simple graphs without isolated vertices with the property $0<\lambda_{2}(G)<\sqrt{2}-1$ are determined. We prove that a graph G without isolated vertices has this property if and only if G belongs to one of three classes of graphs with corresponding values of the respective parameters.

The union $G_{1} \cup G_{2}$ of graphs $G_{1}=\left(V_{1}, U_{1}\right)$ and $G_{2}=\left(V_{2}, U_{2}\right)\left(V_{1} \cap V_{2}=\emptyset\right)$ is the graph $G=(V, U)$, for which $V=V_{1} \cup V_{2}$ and $U=U_{1} \cup U_{2}$.

The complete product $G_{1} \nabla G_{2}$ of graphs G_{1} and G_{2} is the graph obtained from $G_{1} \cup G_{2}$ by joining every vertex of G_{1} with every vertex of G_{2}.

The complete multipartite graph $\underline{K}_{s_{1}, \ldots, s_{m}}$ is the complete product of disjoint graphs $\bar{K}_{s_{1}}, \ldots, \bar{K}_{s_{m}}$ i.e., $K_{s_{1}, \ldots, s_{m}}=\bar{K}_{s_{1}} \nabla \cdots \nabla \bar{K}_{s_{m}}$.

In particular, $n G$ denotes $G \cup G \cup \cdots \cup G$ and $\nabla_{n} G$ denotes $G \nabla G \nabla \cdots \nabla G$.

[^0]On graphs whose second largest eigenvalue does not exceed $\sqrt{2}-1$

2. LEMMAS

Let V^{\prime} be a subset of vertices of a graph G and $\left|V^{\prime}\right|=k$. Denote by $G-V^{\prime}$ the subgraph obtained from G by deleting all vertices in V^{\prime} together with incident edges. The inequalities in the following lemma are known as Cauchy's inequalities. Lemma 1 (see, for example, [3], p. 19). For $1 \leq i \leq n-k$,

$$
\lambda_{i}(G) \geq \lambda_{1}\left(G-V^{\prime}\right) \geq \lambda_{i+k}(G)
$$

Lemma 2 (E. S. Wolk [6].) If \bar{G} is a connected graph and G has no isolated vertices, then G contains an induced subgraph isomorpic to $2 K_{2}$ or P_{4}.
Lemma 3 (J. H. Smith, [5]). If a simple graph without isolated vertices does not contain as an induced subgraph any of graphs $2 K_{2}, P_{4}$ and $K_{1} \nabla\left(K_{1} \cup K_{2}\right)$ in Fig. 1. then G is a complete multipartite graph.

$2 K_{2}$

Fig. 1
$K_{1} \nabla\left(K_{1} \cup K_{2}\right)$

The following lemma is a consequence of a routine calculation.
Lemma 4. Let H_{1}, H_{2}, H_{3} and H_{4} be the graphs as in Fig 2. Then $\lambda_{2}\left(H_{i}\right)>$ $\sqrt{2}-1(1 \leq i \leq 4)$.

$$
H_{1}=K_{1} \nabla\left(K_{1} \cup \bar{K}_{2}\right) \quad H_{2}=K_{1} \nabla\left(K_{1} \cup K_{3}\right) \quad H_{3}=\left(K_{1} \cup K_{2}\right) \nabla\left(K_{1} \cup P_{3}\right) \quad H_{4}=\left(K_{1} \cup P_{3}\right) \nabla K_{3}
$$

Fig. 2
Lemma 5 (D. Cvetković [2], [3], p. 57). The characteristic polynomial of the ∇-product of graphs G_{1} and $G_{2}\left(\left|G_{1}\right|=n_{1},\left|G_{2}\right|=n_{2}\right)$ is given by the relation

$$
\begin{aligned}
& P\left(G_{1} \nabla G_{2}, \lambda\right)=(-1)^{n_{2}} P\left(G_{1}, \lambda\right) P\left(\bar{G}_{2},-\lambda-1\right) \\
& +(-1)^{n_{1}} P\left(G_{2}, \lambda\right) P\left(\bar{G}_{1},-\lambda-1\right)(-1)^{n_{1}+n_{2}} P\left(\bar{G}_{1},-\lambda-1\right) P\left(\bar{G}_{2},-\lambda-1\right)
\end{aligned}
$$

Lemma 6. We have

$$
\begin{gather*}
P\left(\nabla_{n}\left(K_{1} \cup K_{2}\right), \lambda\right) \tag{1}\\
=(\lambda+1)^{n-1}\left(\lambda^{2}+2 \lambda-1\right)^{n-1}\left(\lambda^{3}-3(n-1) \lambda^{2}-(2 n-1) \lambda+n-1\right) \\
P\left(\left(\nabla_{n}\left(K_{1} \cup K_{2}\right)\right) \nabla\left(\nabla_{m} \bar{K}_{p}\right), \lambda\right) \tag{2}\\
=\lambda^{m(p-1)}(\lambda+p)^{m-1}(\lambda+1)^{n-1}\left(\lambda^{2}+2 \lambda-1\right)^{n-1}\left(\lambda^{4}-3(n-1)+p(m-1)\right) \lambda^{3}
\end{gather*}
$$

$$
\begin{align*}
& \left.-(3 p(n+m-1)+2 n-1) \lambda^{2}+(p(2 n+m-1)-n+1) \lambda+p(n+m-1)\right) ; \\
& \left.\quad \lambda_{2}\left(\nabla_{n}\left(K_{1} \cup K_{2}\right)\right) \nabla\left(\nabla_{m} \bar{K}_{p}\right)\right)=\sqrt{2}-1 \text { for } n>1, \tag{3}\\
& \lambda_{2}\left(\left(K_{1} \cup K_{2}\right) \nabla\left(\nabla_{m} \bar{K}_{p}\right)\right)<\sqrt{2}-1 .
\end{align*}
$$

Proof. We prove (1) by induction. For $n=1$, equality (1) reads

$$
P\left(K_{1} \cup K_{2}, \lambda\right)=\lambda^{3}-\lambda=\lambda\left(\lambda^{2}-1\right),
$$

and it can be proved by a straightforward calculation.
Assume that (1) is valid for a positive integer n, and prove it for $n+1$. Since

$$
P\left(\overline{\nabla_{n}\left(K_{1} \cup K_{2}\right)},-\lambda-1\right)=P\left(n P_{3},-\lambda-1\right)=(-1)^{n}(\lambda+1)^{n}\left(\lambda^{2}+2 \lambda-1\right)^{n},
$$

we have by Lemma 5

$$
\begin{aligned}
P\left(\nabla_{n+1}\left(K_{1} \cup K_{2}\right), \lambda\right) & =P\left(\left(\nabla_{n}\left(K_{1} \cup K_{2}\right)\right) \nabla\left(K_{1} \cup K_{2}\right), \lambda\right) \\
& =-P\left(\nabla_{n}\left(K_{1} \cup K_{2}\right), \lambda\right) P\left(\overline{K_{1} \cup K_{2}},-\lambda-1\right) \\
& +(-1)^{n} P\left(K_{1} \cup K_{2}, \lambda\right) P\left(\overline{\nabla_{n}\left(K_{1} \cup K_{2}\right)},-\lambda-1\right) \\
& -(-1)^{n+1} P\left(\overline{\nabla_{n}\left(K_{1} \cup K_{2}\right)},-\lambda-1\right) P\left(\overline{K_{1} \cup K_{2}},-\lambda-1\right) .
\end{aligned}
$$

Whence, by some calculation, we get relation (1) for the next positive integer $n+1$.
Relation (2) is easy to prove by Lemmas 5 and 6, relation (1), having in mind that

$$
\begin{aligned}
P\left(\nabla_{m} \bar{K}_{p}, \lambda\right) & =\lambda^{m(p-1)}(\lambda+p(1-m))(\lambda+p)^{m-1}, \\
P\left(\overline{\nabla_{m} \overline{K_{p}}},-\lambda-1\right) & =P\left(m K_{p},-\lambda-1\right)=(-1)^{m p} \lambda^{m(p-1)}(\lambda+p)^{m} .
\end{aligned}
$$

Let $f(\lambda)=\lambda^{4}-(3(n-1)+p(m-1)) \lambda^{3}-(3 p(n+m-1)+2 n-1) \lambda^{2}+$ $(p(2 n+m-1)-n+1) \lambda+p(n+m-1)$. It is easy to check that $f(\lambda)$ has exactly two positive roots and $f(0)>0, f(\sqrt{2}-1)<0, f(+\infty)>0$. Therefore the positive roots of $f(\lambda)$ lie in intervals $(0, \sqrt{2}-1)$ and $(\sqrt{2}-1,+\infty)$. By (2) we conclude that $\lambda_{2}\left(\left(\nabla_{n}\left(K_{1} \cup K_{2}\right)\right) \nabla\left(\nabla_{m} \bar{K}_{p}\right)\right)=\sqrt{2}-1$ if $n>1$ and $\lambda_{2}\left(\left(K_{1} \cup K_{2}\right) \nabla\left(\nabla_{m} \bar{K}_{p}\right)\right)<$ $\sqrt{2}-1$
Lemma 7. $\lambda_{2}\left(\left(K_{1} \cup K_{r, s}\right) \nabla \bar{K}_{q}\right) \leq \sqrt{2}-1 \quad(r \leq s)$ if and only if one of the conditions 1.-10. holds:

1. $r>1, s \geq r, q=1$;
2. $r=1, s \geq 1, q \geq 2$;
3. $r=2, s \geq 2, q=2$;
4. $r=2,2 \leq s \leq 3, q \geq 3$;
5. $r=2, s=4,3 \leq q \leq 7$;
6. $r=2, s=5,3 \leq q \leq 4$;
7. $r=2,6 \leq s \leq 8, q=3$;
8. $r=3, s=3,2 \leq q \leq 4$;
9. $r=3,4 \leq s \leq 7, q=2$;
10. $r=4, s=4, q=2$.

Proof. Since

$$
\begin{aligned}
P\left(K_{1} \cup K_{r, s}, \lambda\right) & =\lambda^{r+s-1}\left(\lambda^{2}-r s\right), \\
P\left(\bar{K}_{q}, \lambda\right) & =\lambda^{q} \\
P\left(\overline{K_{1} \cup K_{r, s}},-\lambda-1\right) & =(-1)^{r+s-1} \lambda^{r+s-2}\left(\lambda^{3}+(r+s+1) \lambda^{2}+r s \lambda-r s\right), \\
P\left(K_{q},-\lambda-1\right) & =(-1)^{q} \lambda^{q-1}(\lambda+q),
\end{aligned}
$$

we have by Lemma 5

$$
P\left(\left(K_{1} \cup K_{r, s}\right) \nabla \bar{K}_{q}, \lambda\right)=\lambda^{q+r+s-3}\left(\lambda^{4}-(q+q r+q s+r s) \lambda^{2}-2 q r s \lambda+q r s\right)
$$

Non-zero eigenvalues of the graph $\left(K_{1} \cup K_{r, s}\right) \nabla \bar{K}_{q}$ (see Fig. 3) are determined by equation $D(\lambda)=\lambda^{4}-(q+q r+q s+r s) \lambda^{2}-2 q r s \lambda+q r s=0$.

The last equation has exactly two positive roots and
$D(0)=q r s>0, \quad D(\sqrt{2}-1)=(3-2 \sqrt{2})(q r s-r s-q s-q r-q)+(17-12 \sqrt{2})$.
Now, it is clear that $\lambda_{2}\left(\left(K_{1} \cup K_{r, s}\right) \nabla \bar{K}_{q}\right) \leq \sqrt{2}-1$ if and only if $D(\sqrt{2}-1) \leq 0$ i.e., $T(q, r, s)=q r s-r s-q s-q r-q<0$.

This inequality is true if the parameters q, r and s satisfy one of the relations 1. -10 .

$\left(K_{1} \cup K_{r, s}\right) \nabla \bar{K}_{q}$

$\left(K_{1} \cup K_{r, s}\right) \nabla K_{p, q}$

Fig. 3

Lemma 8. $\lambda_{2}\left(\left(K_{1} \cup K_{r, s}\right) \nabla K_{p, q}\right) \leq \sqrt{2}-1(r \leq s, p \leq q)$ if and only if one of the conditions 1.-5. holds:

1. $r=1, s=1, p \geq 1, q \geq p ;$
2. $r=1, s=2,1 \leq p \leq 2, q \leq p ;$
3. $\quad r=1, s=2, p=3,3 \leq q \leq 7$;
4. $r=1, s=2, p=4, q=4$;
5. $\quad r=1, s=3, p=1, q=1$.

Proof. Since

$$
\begin{aligned}
P\left(K_{1} \cup K_{r, s}, \lambda\right) & =\lambda^{r+s-1}\left(\lambda^{2}-r s\right), \\
P\left(K_{p, q}, \lambda\right) & =\lambda^{p+q-2}\left(\lambda^{2}-p q\right) \\
P\left(\overline{K_{1} \cup K_{r, s}},-\lambda-1\right) & =(-1)^{r+s-1} \lambda^{r+s-2}\left(\lambda^{3}+(r+s+1) \lambda^{2}+r s \lambda-r s\right), \\
P\left(\overline{K_{p, q}},-\lambda-1\right) & =(-1)^{p+q}(\lambda+p)(\lambda+q) \lambda^{p+q-2}
\end{aligned}
$$

we have by Lemma 5

$$
\begin{gathered}
P\left(\left(K_{1} \cup K_{r, s}\right) \nabla K_{p, q}, \lambda\right)=\lambda^{p+q+r+s-5}\left(\lambda^{5}-(p q+r s+(p+q)(r+s+1)) \lambda^{3}\right. \\
\left.-2(r s(p+q)+p q(r+s+1)) \lambda^{2}-(3 p q r s-r s(p+q)) \lambda+2 p q r s\right) .
\end{gathered}
$$

Non-zero eigenvalues of the graph $\left(K_{1} \cup K_{r, s}\right) \nabla K_{p, q}$ (see Fig. 3) are determined by equation

$$
D(\lambda)=\lambda^{5}-(p q+r s+(p+q)(r+s+1)) \lambda^{3}-2(r s(p+q)+p q(r+s+1)) \lambda^{2}
$$

$$
-(3 p q r s-r s(p+q)) \lambda+2 p q r s=0 .
$$

This equation has exactly two positive roots and $D(0)=-2 p q r s<0$. Hence $\lambda_{2}\left(\left(K_{1} \cup K_{r, s}\right) \nabla K_{p, q}\right) \leq \sqrt{2}-1$ if and only if $D(\sqrt{2}-1) \geq 0$. It is easy to prove that the last inequality holds if parameters p, q, r and s satisfy one of relations 1. -5 .

THE MAIN RESULT

Theorem. Let G be a graph without isolated vertices. Then $0<\lambda_{2}(G) \leq \sqrt{2}-1$ if and only if one of the following holds:
(a) $G=\left(\nabla_{n}\left(K_{1} \cup K_{2}\right)\right) \nabla K_{s_{1}, \ldots, s_{m}}$;
(b) $G=\left(K_{1} \cup K_{r, s}\right) \nabla \bar{K}_{q}$, and parameters q, r and s satisfy one of conditions 1.-10. from Lemma7;
(c) $G=\left(K_{1} \cup K_{r, s}\right) \nabla K_{p, q}$, and parameters p, q, r and s satisfy one of conditions 1.-5. from Lemma 8.

Proof. Let $0<\lambda_{2}(G) \leq \sqrt{2}-1$. Then G must be connected. Otherwise, $2 K_{2} \subset G$ and, by Lemma $1, \lambda_{2}(\bar{G}) \geq \lambda_{2}\left(2 K_{2}\right)=1>\sqrt{2}-1$, a contradiction. The following statements are also true.
$1^{\circ} \bar{G}$ is disconnected. Otherwise, by Lemma 2, G contains $2 K_{2}$ or P_{4} as an induced subgraph and, by Lemma $1, \lambda_{2}(G) \geq \min \left\{\lambda_{2}\left(2 K_{2}\right), \lambda_{2}\left(P_{4}\right)\right\}=(\sqrt{5}-$ 1) $/ 2>\sqrt{2}-1$, what is a contradiction.

Hence, $\bar{G}=G_{1} \cup G_{2} \cup \cdots \cup G_{k}(k \geq 2)$, where $G_{1}, G_{2}, \ldots, G_{k}$ are components of \bar{G}. Note that \bar{G}_{i} is an induced subgraph of G for each i and

$$
G=\bar{G}_{1} \nabla \bar{G}_{2} \nabla \cdots \bar{G}_{k}
$$

2° Each graph $\bar{G}_{i}(1 \leq i \leq k)$ contains an isolated vertex. Otherwise, by Lemma 2, \bar{G}_{i} contains $2 K_{2}$ or P_{4} as an induced subgraph. Thus $\lambda_{2}(G) \geq \lambda_{2}\left(G_{i}\right) \geq$ $(\sqrt{5}-1) / 2>\sqrt{2}-1$, a contradiction.
3° For some i, \bar{G}_{i} contains the edges. Otherwise, G is a complete multipartite graph and $\lambda_{2}(G) \leq 0$, a contradiction.
4° Any graph \bar{G}_{i} with edges, contains exactly one isolated vertex. Otherwise, $H_{1} \subset G$ and, by Lemmas 1 and $4, \lambda_{2}(G) \geq \lambda_{2}\left(H_{1}\right)>\sqrt{2}-1$, a contradiction. Denote by v_{i} isolated vertex of a such graph \bar{G}_{i}.
5° Each graph \bar{G}_{i}, which contains edges, does not contain the graph K_{3} as an induced subgraph. Otherwise, $H_{2} \subset G$ and, by Lemmas 1 and $4, \lambda_{2}(G) \geq \lambda_{2}\left(H_{2}\right)>$ $\sqrt{2}-1$, a contradiction.

Thus, \bar{G}_{i} with edges does not contain circuits of odd length and $\bar{G}-v_{i}$ is a bipartite graph. It follows that \bar{G}_{i} does not contain the graph $K_{1} \nabla\left(K_{1} \cup K_{2}\right)$ as an induced subgraph and, by Lemma $3, \bar{G}_{i}-v_{i}$ is a complete bipartite graph.

In the sequal, we distinguish two cases.
Case I. At least two graphs \bar{G}_{i} contain edges. Then, for any such graph \bar{G}_{i}, $\bar{G}_{i}=K_{1} \cup K_{2}$. Otherwise, $H_{3} \subset G$ and, by Lemmas 1 and $4, \lambda_{2}(G) \geq \lambda_{2}\left(H_{3}\right)>$ $\sqrt{2}-1$, a contradiction.

We conclude that $G=\left(\nabla_{n}\left(K_{1} \cup K_{2}\right)\right) \nabla K_{s_{1}, \ldots, s_{m}}$. Let $p=\max \left\{s_{1}, \ldots, s_{m}\right\}$. Then $G \subset\left(\nabla_{n}\left(K_{1} \cup K_{2}\right)\right) \nabla\left(\nabla_{m} \bar{K}_{p}\right)$ and, by Lemmas 1 and 6 ,

$$
\lambda_{2}(G) \leq \lambda_{2}\left(\left(\nabla_{n}\left(K_{1} \cup K_{2}\right)\right) \nabla\left(\nabla_{m} \bar{K}_{p}\right)\right)=\sqrt{2}-1
$$

Case II. Exactly one of the graphs \bar{G}_{i} contains edges. Let \bar{G}_{1} has this property.

If $\bar{G}_{1}=K_{1} \cup K_{2}$, then $G=\left(K_{1} \cup K_{2}\right) \nabla K_{s_{1}, \ldots, s_{m}}$ and, by Lemmas 1 and 6 , $\lambda_{2}(G) \leq \lambda_{2}\left(\left(K_{1} \cup K_{2}\right) \nabla\left(\nabla_{m} \bar{K}_{p}\right)\right)<\sqrt{2}-1\left(p=\max \left\{s_{1}, \ldots, s_{m}\right\}\right)$.

If $\bar{G}_{1}=K_{1} \cup K_{r, s}(r \leq s, s \geq 2)$, then $k \leq 3$. Otherwise, $H_{4} \subset G$ and, by Lemmas 1 and $4, \lambda_{2}(G) \geq \lambda_{2}\left(H_{4}\right)>\sqrt{2}-1$, a contradiction. We conclude that in this case $G=\left(K_{1} \cup K_{r, s}\right) \nabla \bar{K}_{q}$ or $G=\left(K_{1} \cup K_{r, s}\right) \nabla K_{p, q}$. By Lemmas 7 and 8, $\lambda_{2}(G) \leq \sqrt{2}-1$ if and only if the corresponding parameters p, q, r and s satisfy one of the conditions 1.-10. from Lemma 7 or one of the conditions 1.-5. from Lemma 8.

This completes the proof.

REFERENCES

1. D. Cao, H. Yuan: Graphs characterized by the second eigenvalue. J. Graph Theory, 17 (1993), No. 3, 325-331.
2. D. M. Cvetković: Graphs and their spectra (Thesis). Univ. Beograd Publ. Elektrotehn. Fak., Ser. Mat. Fiz., No. 354-No. 356 (1971), 1-50.
3. D. M. Cvetković, M. Doob, H. Sachs: Spectra of graphs-theory and application. Academic Press, New York, 1980.
4. M. Petrović: On graphs with exactly one eigenvalue less than - 1. J.Comb. Theory (B), 52 (1991), 102-112.
5. J. H. Smith: Some properties of the spectrum of a graph. In: Combinatorial Structures and Their Applications, Gordon and Breach, Science Publ., Inc., New York-LondonParis 1970, 403-406.
6. E. S. Wolk: A note on the comparability graph of a tree. Proc. of A.M.S. 16 (1965), 17-20.

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification: 05C50

