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ON GRAPHS WHOSE SECOND LARGEST

EIGENVALUE DOES NOT EXCEED
p
2� 1

Miroslav Petrovi�c

Graphs whose second largest eigenvalue does not exceed
p
2� 1 are character-

ized.

1. INTRODUCTION

Let �1; �2; : : : ; �n (�1 � �2 � � � � � �n) be the eigenvalues of a graph G on n

vertices.

The second largest eigenvalue �2 = �2(G) of a graph G appears several times

in the literature. Of special importance are graphs for which �2(G) has a small

value.

A. J. Hoffman posed the problem of characterizing graphs with the second

largest eigenvalue not greater than 1. An explicit characterization of connected

bipartite graphs with the property �2(G) � 1 is given in [4].

P. Cao and H. Yuan[1] determine graphs without isolated vertices with the

property 0 < �2(G) < 1=3. They also posed the problem of characterizing graphs

with the property 1=3 < �2(G) < (
p
5� 1)=2.

In this paper all simple graphs without isolated vertices with the property

0 < �2(G) <
p
2 � 1 are determined. We prove that a graph G without isolated

vertices has this property if and only if G belongs to one of three classes of graphs

with corresponding values of the respective parameters.

The union G1 [G2 of graphs G1 = (V1; U1) and G2 = (V2; U2) (V1
T
V2 = ;)

is the graph G = (V; U ), for which V = V1 [ V2 and U = U1 [ U2.

The complete product G1rG2 of graphs G1 and G2 is the graph obtained

from G1 [G2 by joining every vertex of G1 with every vertex of G2.

The complete multipartite graph Ks1;:::;sm
is the complete product of disjoint

graphs Ks1
; : : : ;Ksm

i.e., Ks1;:::;sm
= Ks1

r� � �rKsm
:

In particular, nG denotes G [G [ � � � [G and rnG denotes GrGr� � �rG.
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2. LEMMAS

Let V 0 be a subset of vertices of a graph G andjV 0j = k. Denote by G� V 0

the subgraph obtained from G by deleting all vertices in V 0 together with incident

edges. The inequalities in the following lemma are known as Cauchy's inequalities.

Lemma 1 (see, for example, [3], p. 19). For 1 � i � n� k,

�i(G) � �1(G� V 0) � �i+k(G):

Lemma 2 (E. S. Wolk [6].) If G is a connected graph and G has no isolated

vertices, then G contains an induced subgraph isomorpic to 2K2 or P4.

Lemma 3 (J. H. Smith, [5]). If a simple graph without isolated vertices does not

contain as an induced subgraph any of graphs 2K2, P4 and K1r(K1 [K2) in Fig.

1. then G is a complete multipartite graph.
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The following lemma is a consequence of a routine calculation.

Lemma 4. Let H1;H2;H3 and H4 be the graphs as in Fig 2. Then �2(Hi) >p
2� 1(1 � i � 4).
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H1=K1r(K1[K2) H2=K1r(K1[K3) H3=(K1[K2)r(K1[P3) H4=(K1[P3)rK3

Fig. 2

Lemma 5 (D. Cvetkovi�c [2], [3], p. 57). The characteristic polynomial of the

r-product of graphs G1 and G2 (jG1j = n1; jG2j = n2) is given by the relation

P (G1rG2; �) = (�1)n2P (G1; �)P (G2;��� 1)

+(�1)n1P (G2; �)P (G1;�� � 1)(�1)n1+n2P (G1;��� 1)P (G2;��� 1):

Lemma 6. We have

(1) P (rn(K1 [K2); �)

= (�+ 1)n�1(�2 + 2�� 1)n�1(�3 � 3(n� 1)�2 � (2n� 1)�+ n � 1);

(2) P ((rn(K1 [K2))r(rmKp); �)

= �m(p�1)(�+ p)m�1(�+ 1)n�1(�2 + 2�� 1)n�1(�4 � 3(n� 1) + p(m � 1))�3
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�(3p(n+m � 1) + 2n� 1)�2 + (p(2n+m � 1)� n+ 1)�+ p(n +m � 1));

(3) �2(rn(K1 [K2))r(rmKp)) =
p
2� 1 for n > 1;

�2((K1 [K2)r(rmKp)) <
p
2� 1:

Proof. We prove (1) by induction. For n = 1, equality (1) reads

P (K1 [K2; �) = �3 � � = �(�2 � 1);

and it can be proved by a straightforward calculation.

Assume that (1) is valid for a positive integer n, and prove it for n+1. Since

P (rn(K1 [K2);�� � 1) = P (nP3;��� 1) = (�1)n(�+ 1)n(�2 + 2�� 1)n;

we have by Lemma 5

P (rn+1(K1 [K2); �) = P ((rn(K1 [K2))r(K1 [K2); �)

= � P (rn(K1 [K2); �)P (K1 [K2;��� 1)

+ (�1)nP (K1 [K2; �)P (rn(K1 [K2);��� 1)

� (�1)n+1P (rn(K1 [K2);��� 1)P (K1 [K2;��� 1):

Whence, by some calculation, we get relation (1) for the next positive integer n+1.

Relation (2) is easy to prove by Lemmas 5 and 6, relation (1), having in mind

that

P (rmKp; �) = �m(p�1)(�+ p(1�m))(� + p)m�1;

P (rmKp;��� 1) = P (mKp;��� 1) = (�1)mp�m(p�1)(� + p)m:

Let f(�) = �4 � (3(n � 1) + p(m � 1))�3 � (3p(n + m � 1) + 2n � 1)�2 +

(p(2n+m� 1)� n+ 1)�+ p(n+m� 1). It is easy to check that f(�) has exactly

two positive roots and f(0) > 0, f(
p
2�1) < 0, f(+1) > 0. Therefore the positive

roots of f(�) lie in intervals (0;
p
2�1) and (

p
2�1;+1). By (2) we conclude that

�2((rn(K1 [K2))r(rmKp)) =
p
2 � 1 if n > 1 and �2((K1 [K2)r(rmKp)) <p

2� 1

Lemma 7. �2((K1 [ Kr;s)rKq) �
p
2 � 1 (r � s) if and only if one of the

conditions 1.{10. holds:
1: r > 1; s � r; q = 1; 6: r = 2; s = 5; 3 � q � 4;

2: r = 1; s � 1; q � 2; 7: r = 2; 6 � s � 8; q = 3;

3: r = 2; s � 2; q = 2; 8: r = 3; s = 3; 2 � q � 4;

4: r = 2; 2 � s � 3; q � 3; 9: r = 3; 4 � s � 7; q = 2;

5: r = 2; s = 4; 3 � q � 7; 10: r = 4; s = 4; q = 2:

Proof. Since

P (K1 [Kr;s; �) = �r+s�1(�2 � rs);

P (Kq; �) = �q

P (K1 [Kr;s;�� � 1) = (�1)r+s�1�r+s�2(�3 + (r + s + 1)�2 + rs�� rs);

P (Kq;�� � 1) = (�1)q�q�1(�+ q);
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we have by Lemma 5

P ((K1 [Kr;s)rKq; �) = �q+r+s�3(�4 � (q + qr + qs + rs)�2 � 2qrs� + qrs):

Non-zero eigenvalues of the graph (K1[Kr;s)rKq (see Fig. 3) are determined

by equation D(�) = �4 � (q + qr + qs + rs)�2 � 2qrs� + qrs = 0:

The last equation has exactly two positive roots and

D(0) = qrs > 0; D(
p
2� 1) = (3� 2

p
2)(qrs � rs � qs � qr � q) + (17� 12

p
2):

Now, it is clear that �2((K1 [Kr;s)rKq) �
p
2 � 1 if and only if D(

p
2� 1) � 0

i.e., T (q; r; s) = qrs� rs � qs � qr � q < 0:

This inequality is true if the parameters q,r and s satisfy one of the relations

1.{10.
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Lemma 8. �2((K1 [Kr;s)rKp;q) �
p
2� 1 (r � s; p � q) if and only if one of the

conditions 1.{5. holds:
1: r = 1; s = 1; p � 1; q � p; 4: r = 1; s = 2; p = 4; q = 4;

2: r = 1; s = 2; 1 � p � 2; q � p; 5: r = 1; s = 3; p = 1; q = 1:

3: r = 1; s = 2; p = 3; 3 � q � 7;

Proof. Since

P (K1 [Kr;s; �) = �r+s�1(�2 � rs);

P (Kp;q; �) = �p+q�2(�2 � pq);

P (K1 [Kr;s;�� � 1) = (�1)r+s�1�r+s�2(�3 + (r + s + 1)�2 + rs�� rs);

P (Kp;q;��� 1) = (�1)p+q(� + p)(� + q)�p+q�2;

we have by Lemma 5

P ((K1 [Kr;s)rKp;q; �) = �p+q+r+s�5(�5 � (pq + rs+ (p+ q)(r + s + 1))�3

�2(rs(p + q) + pq(r + s+ 1))�2 � (3pqrs� rs(p + q))�+ 2pqrs):

Non-zero eigenvalues of the graph (K1 [Kr;s)rKp;q (see Fig. 3) are deter-

mined by equation

D(�) = �5 � (pq + rs + (p+ q)(r + s + 1))�3 � 2(rs(p + q) + pq(r + s+ 1))�2
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�(3pqrs� rs(p+ q))� + 2pqrs = 0:

This equation has exactly two positive roots and D(0) = �2pqrs < 0. Hence

�2((K1 [Kr;s)rKp;q) �
p
2 � 1 if and only if D(

p
2 � 1) � 0. It is easy to prove

that the last inequality holds if parameters p, q, r and s satisfy one of relations

1.{5.

THE MAIN RESULT

Theorem. Let G be a graph without isolated vertices. Then 0 < �2(G) �
p
2 � 1

if and only if one of the following holds:

(a) G = (rn(K1 [K2))rKs1;:::;sm
;

(b) G = (K1 [ Kr;s)rKq, and parameters q, r and s satisfy one of conditions

1.{10. from Lemma7;

(c) G = (K1[Kr;s)rKp;q, and parameters p, q, r and s satisfy one of conditions

1.{5. from Lemma 8.

Proof. Let 0 < �2(G) �
p
2�1. Then G must be connected. Otherwise, 2K2 � G

and, by Lemma 1, �2(G) � �2(2K2) = 1 >
p
2� 1, a contradiction. The following

statements are also true.

1� G is disconnected. Otherwise, by Lemma 2, G contains 2K2 or P4 as

an induced subgraph and, by Lemma 1, �2(G) � minf�2(2K2); �2(P4)g = (
p
5 �

1)=2 >
p
2� 1, what is a contradiction.

Hence, G = G1[G2[� � �[Gk (k � 2), where G1; G2; : : : ; Gk are components

of G. Note that Gi is an induced subgraph of G for each i and

G = G1rG2r� � �Gk:

2� Each graph Gi (1 � i � k) contains an isolated vertex. Otherwise, by

Lemma 2, Gi contains 2K2 or P4 as an induced subgraph. Thus �2(G) � �2(Gi) �
(
p
5� 1)=2 >

p
2� 1, a contradiction.

3� For some i, Gi contains the edges. Otherwise, G is a complete multipartite

graph and �2(G) � 0, a contradiction.

4� Any graph Gi with edges, contains exactly one isolated vertex. Otherwise,

H1 � G and, by Lemmas 1 and 4, �2(G) � �2(H1) >
p
2 � 1, a contradiction.

Denote by vi isolated vertex of a such graph Gi.

5� Each graph Gi, which contains edges, does not contain the graph K3 as an

induced subgraph. Otherwise, H2 � G and, by Lemmas 1 and 4, �2(G) � �2(H2) >p
2� 1, a contradiction.

Thus, Gi with edges does not contain circuits of odd length and G� vi is a

bipartite graph. It follows that Gi does not contain the graph K1r(K1 [K2) as

an induced subgraph and, by Lemma 3, Gi � vi is a complete bipartite graph.
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In the sequal, we distinguish two cases.

Case I. At least two graphs Gi contain edges. Then, for any such graph Gi,

Gi = K1 [K2. Otherwise, H3 � G and, by Lemmas 1 and 4, �2(G) � �2(H3) >p
2� 1, a contradiction.

We conclude that G = (rn(K1 [K2))rKs1;:::;sm
. Let p = maxfs1; : : : ; smg.

Then G � (rn(K1 [K2))r(rmKp) and, by Lemmas 1 and 6,

�2(G) � �2((rn(K1 [K2))r(rmKp)) =
p
2� 1:

Case II. Exactly one of the graphs Gi contains edges. Let G1 has this prop-

erty.

If G1 = K1 [K2, then G = (K1 [K2)rKs1;:::;sm
and, by Lemmas 1 and 6,

�2(G) � �2((K1 [K2)r(rmKp)) <
p
2� 1 (p = maxfs1; : : : ; smg).

If G1 = K1 [Kr;s (r � s; s � 2), then k � 3. Otherwise, H4 � G and, by

Lemmas 1 and 4, �2(G) � �2(H4) >
p
2� 1, a contradiction. We conclude that in

this case G = (K1 [Kr;s)rKq or G = (K1 [Kr;s)rKp;q. By Lemmas 7 and 8,

�2(G) �
p
2 � 1 if and only if the corresponding parameters p, q, r and s satisfy

one of the conditions 1.{10. from Lemma 7 or one of the conditions 1.{5. from

Lemma 8.

This completes the proof.
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