ON A SOLVABLE CLASS OF $\mathrm{N}^{\text {th }}$ ORDER LINEAR DIFFERENTIAL EQUATIONS

Murray S. Klamkin

Differential equations (2) and (5) are solved.
It is a known result that if one has a solution $y=f(x)$ to the linear homogeneous D. E. (differential equation) $\left[D^{n}+u_{1}(x) D^{n-1}+\cdots+u_{n}(x)\right] y=0$, one can depress the order by one by means of the substitution $y=z f(x)$. Thus for the case $n=2$, one solution leads to the general solution since the resulting $1^{\text {st }}$ order linear D. E. can always be solved.

Here we exhibit a class of $n^{\text {th }}$ order D.E.'s whose general solution will follow from the knowledge of one solution. The motivation for this note arises from the problem of proving the identity

$$
\begin{equation*}
2^{2 n+1}\left[D^{n} x^{n+1 / 2} D^{n+1}\right] e^{\sqrt{x}}=e^{\sqrt{x}} \tag{1}
\end{equation*}
$$

I had first seen this problem a long time ago in one of the many problem books of D. S. Mitrinović and had proved it at that time. More recently in preparing a talk on the 100th anniversary of the American Mathematical Monthly problem section, I fond it again as a proposed problem in the Monthly's first volume [1]. There were two inductive proofs given, one of which was not really complete. Since I wanted to see a simple proof than the ones given, I tried to recall my original proof but without success. This led me to solve the D.E.

$$
\begin{equation*}
\left[D^{n} x^{n+1 / 2} D^{n+1}\right] y=y \tag{2}
\end{equation*}
$$

and generalizations thereof (the factor $2^{2 n+1}$ was removed by letting $x \rightarrow 4 x$ so that $e^{\sqrt{x}} \rightarrow e^{2 \sqrt{x}}$). The knowledge of the subsequent solution of (2) leads to a very easy way of obtaining all the solutions of (2) from just knowing that $e^{2 \sqrt{x}}$ is one solution. By letting $x \rightarrow k^{2} t$ where $k^{2 n+1}=1$, (2) remains the same. Hence the general solution of (2) is

$$
\begin{equation*}
y=\sum_{m} A_{m} e^{2 \omega^{m} \sqrt{x}}, \tag{3}
\end{equation*}
$$

where ω is a primitive $(2 n+1)$-root of unity.

[^0]To obtain the solution of (2) ab inito, we note that it is somewhat like an Euler linear D.E., so we make the substitution $x=e^{z}$ and use the exponential shift theorem $e^{a z} L(D) \equiv L(D-a) e^{a z}$ to obtain

$$
\left(D-\frac{1}{2}\right)\left(D-\frac{3}{2}\right) \cdots\left(D-n+\frac{1}{2}\right) D(D-1) \cdots(D-n) y=e^{(n+1 / 2) z} y
$$

To get rid of the fractions, we let $z=2 s: D(D-1)(D-2) \cdots(D-2 n-1) y$ $=2^{2 n+1} e^{(2 n+1) s} y$. Now letting $t=e^{s}$, we get $D^{2 n+1} y=2^{2 n+1} y$ so that

$$
y=\sum_{m} A_{m} e^{2 \omega^{m} t}=\sum_{m} A_{m} e^{2 \omega^{m} \sqrt{x}}
$$

Combining the substitutions that were made, we obtain the known operator identity

$$
\begin{equation*}
D^{n} x^{n+1 / 2} D^{n+1}=[\sqrt{x} D]^{2 n+1} \tag{4}
\end{equation*}
$$

If I was aware of this identity at the time, I would not have been led to the more general D.E.

$$
\begin{equation*}
D^{n}\left[x^{n+(r-1) / r} D^{n+1}\right]^{r-1} y=y \tag{5}
\end{equation*}
$$

since it leads to an immediate solution of (2). Solving (5) in the same manner as for (2), the general solution is given by

$$
\begin{equation*}
y=\sum_{m} A_{m} \exp \left(r \omega^{m} x^{1 / r}\right) \tag{6}
\end{equation*}
$$

Also knowing one solution $y=e^{r x^{1 / r}}$ of (5), we could have obtained the general solution as before. Finally as before, the solution (6) leads to the following generalization of operator identity (4):

$$
\begin{equation*}
D^{n}\left[x^{n+(r-1) / r} D^{n+1}\right]^{r-1} \equiv\left[x^{(r-1) / r} D\right]^{r n+r-1} . \tag{7}
\end{equation*}
$$

Postscript: I subsequently came across identity (1) again in [2], p. 86. His proof is gotten by expanding $e^{\sqrt{x}}$ into a power series and carrying out the indicated differentiations. Since this book was first published in 1885 , it is quite likeky that (1) appeared as a problem in a Cambridge University examination paper.

REFERENCES

1. Problem 59. Amer. Math. Monthly, 1 (1894) 361 and 3 (1896) 177.
2. A. R. Forsythe: A Treatise on Differential Equations. MacMillan, London, 1948.

[^0]: 1991 Mathematics Subject Classification: 34A05

