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ON A SOLVABLE CLASS OF Nth ORDER

LINEAR DIFFERENTIAL EQUATIONS

Murray S. Klamkin

Di�erential equations (2) and (5) are solved.

It is a known result that if one has a solution y = f(x) to the linear homo-
geneous D. E. (di�erential equation) [Dn + u1(x)D

n�1 + � � �+ un(x)]y = 0; one
can depress the order by one by means of the substitution y = zf(x): Thus for the
case n = 2; one solution leads to the general solution since the resulting 1st order
linear D. E. can always be solved.

Here we exhibit a class of nth order D.E.'s whose general solution will follow
from the knowledge of one solution. The motivation for this note arises from the
problem of proving the identity

22n+1[Dnxn+1=2Dn+1]e
p
x = e

p
x:(1)

I had �rst seen this problem a long time ago in one of the many problem books
of D. S. Mitrinovi�c and had proved it at that time. More recently in preparing
a talk on the 100th anniversary of the American Mathematical Monthly problem
section, I fond it again as a proposed problem in the Monthly's �rst volume [1].
There were two inductive proofs given, one of which was not really complete. Since
I wanted to see a simple proof than the ones given, I tried to recall my original
proof but without success. This led me to solve the D.E.

[Dnxn+1=2Dn+1]y = y(2)

and generalizations thereof (the factor 22n+1 was removed by letting x ! 4x so
that e

p
x ! e2

p
x). The knowledge of the subsequent solution of (2) leads to a very

easy way of obtaining all the solutions of (2) from just knowing that e2
p
x is one

solution. By letting x ! k2t where k2n+1 = 1; (2) remains the same. Hence the
general solution of (2) is

y =
X
m

Ame
2!m

p
x;(3)

where ! is a primitive (2n+ 1)-root of unity.
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To obtain the solution of (2) ab inito, we note that it is somewhat like an
Euler linear D.E., so we make the substitution x = ez and use the exponential
shift theorem eazL(D) � L(D � a)eaz to obtain�

D �
1

2

��
D �

3

2

�
� � �

�
D � n+

1

2

�
D(D � 1) � � � (D � n)y = e(n+1=2)zy:

To get rid of the fractions, we let z = 2s : D(D� 1)(D� 2) � � � (D� 2n� 1)y
= 22n+1e(2n+1)sy: Now letting t = es; we get D2n+1y = 22n+1y so that

y =
X
m

Ame2!
m
t =
X
m

Ame2!
mp

x:

Combining the substitutions that were made, we obtain the known operator
identity

Dnxn+1=2Dn+1 = [
p
xD]2n+1:(4)

If I was aware of this identity at the time, I would not have been led to the more
general D.E.

Dn[xn+(r�1)=rDn+1]r�1y = y(5)

since it leads to an immediate solution of (2). Solving (5) in the same manner as
for (2), the general solution is given by

y =
X
m

Am exp(r!mx1=r):(6)

Also knowing one solution y = erx
1=r

of (5), we could have obtained the gene-
ral solution as before. Finally as before, the solution (6) leads to the following
generalization of operator identity (4):

Dn[xn+(r�1)=rDn+1]r�1 � [x(r�1)=rD]rn+r�1:(7)

Postscript: I subsequently came across identity (1) again in [2], p. 86. His
proof is gotten by expanding e

p
x into a power series and carrying out the indicated

di�erentiations. Since this book was �rst published in 1885, it is quite likeky that

(1) appeared as a problem in a Cambridge University examination paper.
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