ON A SUM INVOLVING THE NUMBER OF PRIME FACTORS OF AN INTEGER

Aleksandar Ivić*

Abstract

A sharp asymptotic formula for the summatory function of $(1+\Omega(n) / \omega(n))^{\omega(n)}$ is derived. As usual $\omega(n)$ is the number of distinct prime factors of n, and $\Omega(n)$ is the total number of prime factors of n

During my stay at the Tata Institute in 1990 Dr. S. Srinivasan asked me to evaluate asymptotically the sum

$$
\begin{equation*}
F(x):=\sum_{2 \leq n \leq x}\left(1+\frac{\Omega(n)}{\omega(n)}\right)^{\omega(n)} \tag{1}
\end{equation*}
$$

Here, as usual, $\omega(n)$ and $\Omega(n)$ denote the number of distinct prime factors of n and the total number of prime factors of n, respectively. At the first glance the sum in (1) seems somewhat bizarre. However, its arithmetic significance comes from the fact that

$$
\begin{equation*}
d(n) \leq\left(1+\frac{\Omega(n)}{\omega(n)}\right)^{\omega(n)} \quad(n>1) \tag{2}
\end{equation*}
$$

where $d(n)$ is the number of divisors of n. Namely, by using the inequality for the arithmetic-geometric means one obtains

$$
\begin{equation*}
\left(\alpha_{1}+1\right) \cdots\left(\alpha_{r}+1\right) \leq\left(\frac{\left(\alpha_{1}+1\right) \cdots\left(\alpha_{r}+1\right)}{r}\right)^{r} \quad\left(\alpha_{i}>0\right) \tag{3}
\end{equation*}
$$

Hence if $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ is the canonical decomposition of n into prime powers, we obtain (2) from (3), and equality holds in (2) if and only if n is a power of a squarefree number. It seems interesting to investigate how much, on the average, one loses in applying (2), and this is how the sum $F(x)$ arises. Since

[^0]\[

$$
\begin{equation*}
\sum_{n \leq x} d(n)=x \log x+(2 \gamma-1) x+O\left(x^{\frac{1}{2}}\right) \tag{4}
\end{equation*}
$$

\]

where $\gamma=0.577 \ldots$ is Euler's constant, we obtain trivially from (2) and (4) that

$$
\begin{equation*}
F(x) \geq x \log x \tag{5}
\end{equation*}
$$

for sufficiently large \boldsymbol{x}. It turns out that the right-hand side of (5) is by a constant factor smaller than the true order of magnitude of $F(x)$, since

$$
\begin{equation*}
F(x) \sim C x \log x \quad(x \rightarrow \infty, C>1) \tag{6}
\end{equation*}
$$

The asymptotic formula (6) follows from a much stronger result. Namely, we shall prove the following

Theorem. Let M be an arbitrary, but fixed natural number. Then there exist constants $A_{1}, A_{2}, \ldots, A_{M}$ which may be effectively computed such that

$$
\begin{align*}
\sum_{2 \leq n \leq x}\left(1+\frac{\Omega(n)}{\omega(n)}\right)^{\omega(n)} & =H(1) x \log x \tag{7}\\
& +\sum_{j=1}^{M} \frac{A_{j}}{(\log \log x)^{j}} x \log x+O\left(\frac{x \log x}{(\log \log x)^{M+1}}\right)
\end{align*}
$$

where

$$
H(s)=\prod_{p}\left(1-p^{-s}\right)^{2}\left(1+\frac{2}{p^{s}-e^{\frac{1}{2}}}\right) \quad\left(\operatorname{Re} s>\frac{1}{\log 4}\right) .
$$

It is easily seen that $H(1)>1$, and from (7) one trivially obtains (6) with $C=$ $H(1)$. We begin the proof of (7) by decomposing the sum $F(x)$ as

$$
\begin{equation*}
F(x)=S_{1}+S_{2}+S_{3}+O(x) \tag{8}
\end{equation*}
$$

say, where in S_{1} we have $\Omega(n)-\omega(n) \leq \sqrt{\omega(n)}$, in S_{2} we have $\sqrt{\omega(n)}<\Omega(n)-$ $\omega(n) \leq \delta \omega(n)$ for a small, fixed $\delta>0$, and in S_{3} we have $\Omega(n)-\omega(n)>\delta \omega(n)$. This splitting makes sense if $\omega(n) \geq \delta^{-2}$, and the contribution of n for which $\omega(n)<\delta^{-2}$ is easily seen to be $O(x)$. It will turn out that the main contribution to $F(x)$ comes from S_{1}, while S_{2} and S_{3} are of a smaller order of magnitude. We shall show that, for some $\eta=\eta(\delta)$ satisfying $\eta<1$, we have

$$
\begin{equation*}
S_{3} \ll x \log ^{\eta} x \tag{9}
\end{equation*}
$$

To accomplish this note that, for $x \geq 1+\delta$ and $\delta \geq 0$, we have

$$
\begin{equation*}
\log (1+x) \leq \frac{\log (2+\delta)}{1+\delta} x \tag{10}
\end{equation*}
$$

Namely, setting $g(x):=\frac{\log (1+x)}{x}$ it is seen that

$$
g^{\prime}(x)=\frac{1}{x(1+x)}-\frac{\log (1+x)}{x^{2}}=\frac{x-(1+x) \log (1+x)}{x^{2}(1+x)}<0
$$

for $x>0$. Hence $g(x)$ is decreasing for $x>0$, and (10) follows. In S_{3} we have $\Omega(n) / \omega(n)>1+\delta$, so that (10) yields

$$
\left(1+\frac{\Omega(n)}{\omega(n)}\right)^{\omega(n)} \leq(2+\delta)^{\Omega(n) /(1+\delta)}
$$

Note that $(2+\delta)^{1 /(1+\delta)}<2$, so that we obtain

$$
\begin{equation*}
S_{3} \leq \sum_{n \leq x}(2+\delta)^{\frac{\Omega(n)}{(1+\delta)}} \ll x \log ^{\eta} x, \eta=(2+\delta)^{\frac{1}{1+\delta}}-1<1 \tag{11}
\end{equation*}
$$

Here we used the well-known result that $\sum_{n \leq x} a^{\Omega(n)} \ll x \log ^{R e a-1} x$ if a is a constant such that $|a|<2$. The proof of this bound follows e. g. by the method of A. Selberg [3]. Also, as usual, $f(x) \ll g(x)$ (same as $f(x)=O(g(x)))$ means that $|f(x)|<C g(x)$ for $x \geq x_{0}, g(x)>0$ and some constant $C>0$.

Next we shall bound S_{2}. To do this we need a bound which is a consequence of an asymptotic formula which will also be needed later. This is contained in the following

Lemma. Let c, d be real numbers such that $c>0$ and $0 \leq d<2$, and r, k integers such that $r \geq 0, k \geq 0$. Let

$$
G(x)=G(x ; c, d, r, k):=\sum_{2 \leq n \leq x} c^{\omega(n)} d^{\Omega(n)-\omega(n)}(\Omega(n)-\omega(n))^{r} \omega^{-k}(n)
$$

Then

$$
\begin{align*}
G(x)=x \log ^{c-1} x\left\{\frac{A_{1}}{(\log \log x)^{k}}+\cdots\right. & +\frac{A_{M}}{(\log \log x)^{k+M-1}}+ \tag{12}\\
& \left.+O\left(\frac{1}{(\log \log x)^{k+M}}\right)\right\}
\end{align*}
$$

for any arbitrary, but fixed integer $M \geq 1$ and effectively computable constants A_{1}, \ldots, A_{M} which depend on c, d, r and \bar{k}.
Proof. The proof follows by the method of [2]. The basic principle is that $z^{h(n)}$ is a multiplicative function of n for $z \in C$ if $h(n)$ is an additive arithmetic function. One considers first

$$
S(x ; z, w):=\sum_{2 \leq n \leq x} c^{\omega(n)} z^{\omega(n)} w^{\Omega(n)-\omega(n)},
$$

where z and w are complex variables satisfying $|z| \leq 2 c,|w| \leq 2-\epsilon$ for some $\epsilon>0$. The reason for the restriction on w, as well as $0 \leq d<2$, is that the generating Dirichlet series

$$
\sum_{n=1}^{\infty} c^{\omega(n)} z^{\omega(n)} w^{\Omega(n)-\omega(n)} n^{-s}=\prod_{p}\left(1+c z p^{-s}+c z w p^{-2 s}+c z w^{2} p^{-3 s}+\cdots\right)
$$

for $\operatorname{Re} s>1$ is absolutely convergent only if $|w|<2$. Analogously to the formula on p. 41 of [2] one obtains $S(x ; z, w)=x \sum_{j=1}^{N} f_{j}(z, w) \log ^{c z-j} x+R_{N}(x ; z, w)$ for any fixed integer $N \geq 1$ and certain regular functions $f_{j}(z, w)$, which may be written down explicitly. The function $R_{N}(x ; z, w)$ is also regular and satisfies $R_{N}(x ; z, w)$ $\ll x(\log x)^{c R e z-N-1}$ uniformly for $|z| \leq 2 c,|w| \leq 2-\epsilon$. We have

$$
\begin{aligned}
T_{r}(x ; z) & :=\sum_{2 \leq n \leq x} c^{\omega(n)} z^{\omega(n)} d^{\Omega(n)-\omega(n)}(\Omega(n)-\omega(n))^{r} \\
& =\left.\frac{\partial}{\partial w}(\underbrace{w \cdots\left(w \frac{\partial S(x ; z, w)}{\partial w}\right)}_{r \text { times }} \cdots)\right|_{w=d}
\end{aligned}
$$

so that $T_{r}(x ; z)$ may be evaluated by using the asymptotic formula for $S(x ; z, w)$. To introduce the reciprocals of $\omega(n)$ in the sums defining $T_{r}(x ; z)$ we divide $T_{r}(x ; z)$ by z and integrate over z, from $\epsilon(x)$ to z, where $\epsilon(x)=\log ^{-A} x$ with a suitable constant $A>0$. This will introduce the factor $1 / \omega(n)$ in the corresponding asymptotic formula. This procedure, described in detail in the monograph [1], is repeated k times, only the last time integration will be from $z=\epsilon(x)$ to $z=1$. In this way the asymptotic formula (12) will be obtained.

With the asymptotic formula (12) at our disposal we may proceed with the estimation of S_{2}. Write

$$
\begin{align*}
&\left(1+\frac{\Omega(n)}{\omega(n)}\right)^{\omega(n)}=2^{\omega(n)}\left(1+\frac{\Omega(n)-\omega(n)}{2 \omega(n)}\right)^{\omega(n)} \\
&=2^{\omega(n)} \exp \left\{\omega(n) \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}\left(\frac{\Omega(n)-\omega(n)}{2 \omega(n)}\right)^{k}\right\} \tag{13}\\
&=2^{\omega(n)} e^{\frac{1}{2}(\Omega(n)-\omega(n))} \exp \left\{\sum_{k=2}^{\infty} \frac{(-1)^{k-1}}{2^{k} k} \frac{(\Omega(n)-\omega(n))^{k}}{\omega^{k-1}(n)}\right\} .
\end{align*}
$$

Recalling that $0 \leq \Omega(n)-\omega(n) \leq \delta \omega(n)$ in S_{2}, we have

$$
\exp \left\{\sum_{k=2}^{\infty} \frac{(-1)^{k-1}}{2^{k} k} \frac{(\Omega(n)-\omega(n))^{k}}{\omega^{k-1}(n)}\right\} \leq \exp (\delta(\Omega(n)-\omega(n)))
$$

Therefore by using (12), with $d=e^{\frac{1}{2}+\delta}$ and δ sufficiently small, we obtain

$$
\begin{align*}
S_{2} & \leq \sum_{2 \leq n \leq x, \Omega(n)-\omega(n)>\sqrt{\omega(n)}} 2^{\omega(n)} d^{\Omega(n)-\omega(n)} \tag{14}\\
& \leq \sum_{2 \leq n \leq x} 2^{\omega(n)} d^{\Omega(n)-\omega(n)} \frac{(\Omega(n)-\omega(n))^{6 M}}{\omega^{3 M}(n)} \ll \frac{x \log x}{(\log \log x)^{3 M}}
\end{align*}
$$

for any fixed integer $M \geq 1$, so that the contribution of S_{2} is absorbed in the error term in (7).

To evaluate S_{1} we use (13), noting that for any fixed integer $N \geq 2$

$$
\begin{aligned}
& \exp \left\{\sum_{k=2}^{\infty} \frac{(-1)^{k-1}}{2^{k} k} \frac{(\Omega(n)-\omega(n))^{k}}{\omega^{k-1}(n)}\right\} \\
&=\prod_{k=2}^{N} \exp \left\{\frac{(-1)^{k-1}}{2^{k} k} \frac{(\Omega(n)-\omega(n))^{k}}{\omega^{k-1}(n)}\right\} \exp \left\{O\left(\frac{(\Omega(n)-\omega(n))^{N+1}}{\omega^{N}(n)}\right)\right\} .
\end{aligned}
$$

In S_{1} we have $0 \leq \Omega(n)-\omega(n) \leq \sqrt{\omega(n)}$, which implies that

$$
\frac{(\Omega(n)-\omega(n))^{k}}{\omega^{k-1}(n)} \leq 1 \quad(k \geq 2)
$$

so that we may use the expansion

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{N}}{N!}+O\left(e^{|x|}|x|^{N+1}\right) \quad(|x| \leq 1)
$$

for each exponential factor in the above product. Thus we shall obtain, for n in S_{1},

$$
\begin{align*}
& \left(1+\frac{\Omega(n)}{\omega(n)}\right)^{\omega(n)}=2^{\omega(n)} e^{\frac{1}{2}(\Omega(n)-\omega(n))} \times \tag{15}\\
& \times\left\{1+\sum_{k=1}^{N} \sum_{r=k+1}^{2 k} d_{r, k} \frac{(\Omega(n)-\omega(n))^{r}}{\omega^{k}(n)}+O\left(e^{\delta(\Omega(n)-\omega(n))} \frac{(\Omega(n)-\omega(n))^{2 N+2}}{\omega^{N+1}(n)}\right)\right\}
\end{align*}
$$

for any fixed integer $N \geq 1$ and suitable constants $d_{r, k}$, which may be explicitly evaluated. Now we substitute (15) in S_{1}, and similarly as in the proof of (14) we use (12) to show that the summation condition $\Omega(n)-\omega(n) \leq \sqrt{\omega(n)}$ after this substitution may be omitted. Hence we shall have (with $N=M$)

$$
\begin{align*}
F(x) & =O\left(\frac{x \log x}{(\log \log x)^{M+1}}\right)+ \tag{16}\\
& +\sum_{2 \leq n \leq x} 2^{\omega(n)} e^{\frac{1}{2}(\Omega(n)-\omega(n))}\left\{1+\sum_{k=1}^{M} \sum_{r=k+1}^{2 k} d_{r, k} \frac{(\Omega(n)-\omega(n))^{r}}{\omega^{k}(n)}\right\} .
\end{align*}
$$

Here the terms corresponding to the sums over k and r are directly evaluated by applying the Lemma with $c=2, d=e^{\frac{1}{2}}$, and they will contribute the sum over j on the right-hand side of (7). There remains yet in (16) the sum of $f(n):=$ $2^{\omega(n)} e^{\frac{1}{2}(\Omega(n)-\omega(n))}$. It can be evaluated without difficulty directly, when one notes that, for $\operatorname{Re} s>1$,

$$
\sum_{n=1}^{\infty} f(n) n^{-s}=\prod_{p}\left(1+2 \sum_{j=1}^{\infty} e^{\frac{1}{2}(j-1)} p^{-j s}\right)=\zeta^{2}(s) H(s)
$$

where

$$
\begin{aligned}
H(s) & =\sum_{n=1}^{\infty} h(n) n^{-s}=\prod_{p}\left(1-p^{-s}\right)^{2}\left(1+2 \sum_{j=1}^{\infty} e^{\frac{1}{2}(j-1)} p^{-j s}\right) \\
& =\prod_{p}\left(1-p^{-s}\right)^{2}\left(1+\frac{2}{p^{s}-e^{\frac{1}{2}}}\right)
\end{aligned}
$$

is a Dirichlet series which is absolutely convergent for $\operatorname{Re} s>\frac{1}{\log 4}$.
Since $\zeta^{2}(s)=\sum_{n=1}^{\infty} d(n) n^{-s} \quad(\operatorname{Re} s>1)$ and (4) holds, it follows that

$$
\begin{align*}
\sum_{n \leq x} f(n) & =\sum_{n \leq x} \sum_{\delta \mid n} d(\delta) h\left(\frac{n}{\delta}\right)=\sum_{n \leq x} h(n) \sum_{m \leq \frac{x}{n}} d(m) \tag{17}\\
& =\sum_{n \leq x} h(n)\left(\frac{x}{n} \log \frac{x}{n}+(2 \gamma-1) \frac{x}{n}+O\left(\left(\frac{x}{n}\right)^{\frac{1}{2}}\right)\right) \\
& =H(1) x \log x+O(x)
\end{align*}
$$

which is sufficiently sharp for our purposes. Therefore if we insert (17) into (16) we obtain the assertion of the Theorem.

REFERENCES

1. J.-M. De Koninck, A. Ivić: Topics in arithmetical functions. Mathematics Studies 43, North-Holland, Amsterdam, 1980.
2. A. Ivić: Sums of products of arithmetical functions. Publ. Inst. Math. (Belgrade) 44 (55), 1987, 31-41.
3. A. Selberg: Note on a paper by L.G. Sathe. J. Indian Math. Soc., 18 (1954), 83-87.

[^0]: 1991 Mathematics Subject Classification: 11N37
 *Research financed by the Mathematical Institute, Belgrade

