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ON A SUM INVOLVING THE NUMBER OF

PRIME FACTORS OF AN INTEGER

Aleksandar Ivi�c*

A sharp asymptotic formula for the summatory function of (1+ 
(n)=!(n))!(n)

is derived. As usual !(n) is the number of distinct prime factors of n; and 
(n)

is the total number of prime factors of n:

During my stay at the Tata Institute in 1990 Dr. S. Srinivasan asked me

to evaluate asymptotically the sum

F (x) :=
X

2�n�x

�
1 +


(n)

!(n)

�!(n)
:(1)

Here, as usual, !(n) and 
(n) denote the number of distinct prime factors of n and

the total number of prime factors of n; respectively. At the �rst glance the sum in

(1) seems somewhat bizarre. However, its arithmetic signi�cance comes from the

fact that

d(n) �
�
1 +


(n)

!(n)

�!(n)
(n > 1);(2)

where d(n) is the number of divisors of n: Namely, by using the inequality for the

arithmetic-geometric means one obtains

(�1 + 1) � � � (�r + 1) �
�
(�1 + 1) � � � (�r + 1)

r

�r
(�i > 0):(3)

Hence if n = p
�1

1 � � �p�rr is the canonical decomposition of n into prime powers,

we obtain (2) from (3), and equality holds in (2) if and only if n is a power of a

squarefree number. It seems interesting to investigate how much, on the average,

one loses in applying (2), and this is how the sum F (x) arises. Since
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X
n�x

d(n) = x logx+ (2 � 1)x+ O(x
1
2 );(4)

where  = 0:577::: is Euler's constant, we obtain trivially from (2) and (4) that

F (x) � x logx(5)

for su�ciently large x: It turns out that the right-hand side of (5) is by a constant

factor smaller than the true order of magnitude of F (x); since

F (x) � C x logx (x!1; C > 1):(6)

The asymptotic formula (6) follows from a much stronger result. Namely, we shall

prove the following

Theorem. Let M be an arbitrary, but �xed natural number. Then there exist

constants A1; A2; :::; AM which may be e�ectively computed such that

X
2�n�x

�
1 +


(n)

!(n)

�!(n)
= H(1)x logx(7)

+

MX
j=1

Aj

(log logx)j
x logx+ O

�
x logx

(log logx)M+1

�
;

where

H(s) =
Y
p

�
1� p

�s
�2�

1 +
2

ps � e
1
2

�
(Re s >

1

log 4
):

It is easily seen that H(1) > 1; and from (7) one trivially obtains (6) with C =

H(1): We begin the proof of (7) by decomposing the sum F (x) as

F (x) = S1 + S2 + S3 + O(x);(8)

say, where in S1 we have 
(n) � !(n) �
p
!(n); in S2 we have

p
!(n) < 
(n) �

!(n) � �!(n) for a small, �xed � > 0; and in S3 we have 
(n)�!(n) > �!(n): This

splitting makes sense if !(n) � �
�2
; and the contribution of n for which !(n) < �

�2

is easily seen to be O(x): It will turn out that the main contribution to F (x) comes

from S1; while S2 and S3 are of a smaller order of magnitude. We shall show that,

for some � = �(�) satisfying � < 1; we have

S3 � x log� x:(9)

To accomplish this note that, for x � 1 + � and � � 0; we have

log(1 + x) � log(2 + �)

1 + �
x:(10)
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Namely, setting g(x) :=
log(1+x)

x
it is seen that

g
0(x) =

1

x(1 + x)
� log(1 + x)

x2
=

x� (1 + x) log(1 + x)

x2(1 + x)
< 0

for x > 0: Hence g(x) is decreasing for x > 0; and (10) follows. In S3 we have


(n)=!(n) > 1 + �; so that (10) yields

�
1 +


(n)

!(n)

�!(n)
� (2 + �)


(n)=(1+�)
:

Note that (2 + �)1=(1+�) < 2; so that we obtain

S3 �
X
n�x

(2 + �)

(n)

(1+�) � x log� x; � = (2 + �)
1

1+� � 1 < 1:(11)

Here we used the well-known result that
P
n�x

a

(n) � x logRe a�1 x if a is a constant

such that jaj < 2: The proof of this bound follows e. g. by the method of A.

Selberg [3]. Also, as usual, f(x) � g(x) (same as f(x) = O(g(x))) means that

jf(x)j < Cg(x) for x � x0; g(x) > 0 and some constant C > 0:

Next we shall bound S2: To do this we need a bound which is a consequence

of an asymptotic formula which will also be needed later. This is contained in the

following

Lemma. Let c; d be real numbers such that c > 0 and 0 � d < 2; and r; k integers

such that r � 0; k � 0: Let

G(x) = G(x; c; d; r; k) :=
X

2�n�x

c
!(n)

d

(n)�!(n) (
(n) � !(n))

r
!
�k(n):

Then

G(x) = x logc�1 x

�
A1

(log logx)k
+ � � �+ AM

(log logx)k+M�1
+(12)

+O

�
1

(log logx)k+M

��

for any arbitrary, but �xed integer M � 1 and e�ectively computable constants

A1; :::; AM which depend on c; d; r and k:

Proof. The proof follows by the method of [2]. The basic principle is that zh(n) is

a multiplicative function of n for z 2 C if h(n) is an additive arithmetic function.

One considers �rst

S(x; z; w) :=
X

2�n�x

c
!(n)

z
!(n)

w

(n)�!(n)

;
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where z and w are complex variables satisfying jzj � 2c; jwj � 2�� for some � > 0:

The reason for the restriction on w; as well as 0 � d < 2;is that the generating

Dirichlet series

1X
n=1

c
!(n)

z
!(n)

w

(n)�!(n)

n
�s =

Y
p

�
1 + czp

�s + czwp
�2s + czw

2
p
�3s + � � �

�

for Re s > 1 is absolutely convergent only if jwj < 2: Analogously to the formula on

p. 41 of [2] one obtains S(x; z; w) = x

NP
j=1

fj(z; w) log
cz�j

x + RN (x; z; w) for any

�xed integer N � 1 and certain regular functions fj(z; w); which may be written

down explicitly. The function RN (x; z; w) is also regular and satis�es RN (x; z; w)

� x(logx)cRez�N�1 uniformly for jzj � 2c; jwj � 2� �: We have

Tr(x; z) :=
X

2�n�x

c
!(n)

z
!(n)

d

(n)�!(n) (
(n)� !(n))

r

=
@

@w

0
BBB@w � � �

�
w
@S(x; z; w)

@w

�
| {z }

r times

� � �

1
CCCA
���������
w=d

;

so that Tr(x; z) may be evaluated by using the asymptotic formula for S(x; z; w):To

introduce the reciprocals of !(n) in the sums de�ning Tr(x; z) we divide Tr(x; z) by

z and integrate over z; from �(x) to z;where �(x) = log�A xwith a suitable constant

A > 0: This will introduce the factor 1=!(n) in the corresponding asymptotic

formula. This procedure, described in detail in the monograph [1], is repeated k

times, only the last time integration will be from z = �(x) to z = 1: In this way

the asymptotic formula (12) will be obtained.

With the asymptotic formula (12) at our disposal we may proceed with the

estimation of S2: Write

�
1 +


(n)

!(n)

�!(n)
= 2!(n)

�
1 +


(n)� !(n)

2!(n)

�!(n)

= 2!(n) exp

(
!(n)

1X
k=1

(�1)k�1
k

�

(n) � !(n)

2!(n)

�k)
(13)

= 2!(n)e
1
2 (
(n)�!(n)) exp

(
1X
k=2

(�1)k�1
2kk

(
(n)� !(n))k

!k�1(n)

)
:

Recalling that 0 � 
(n)� !(n) � �!(n) in S2; we have

exp

(
1X
k=2

(�1)k�1
2kk

(
(n)� !(n))k

!k�1(n)

)
� exp (� (
(n) � !(n))) :
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Therefore by using (12), with d = e
1
2
+� and � su�ciently small, we obtain

S2 �
X

2�n�x;
(n)�!(n)>
p
!(n)

2!(n)d
(n)�!(n)(14)

�
X

2�n�x

2!(n)d
(n)�!(n)
(
(n) � !(n))6M

!3M (n)
� x logx

(log logx)3M

for any �xed integer M � 1; so that the contribution of S2 is absorbed in the error

term in (7).

To evaluate S1 we use (13), noting that for any �xed integer N � 2

exp

(
1X
k=2

(�1)k�1
2kk

(
(n)� !(n))k

!k�1(n)

)

=

NY
k=2

exp

�
(�1)k�1
2kk

(
(n) � !(n))k

!k�1(n)

�
exp

�
O

�
(
(n)� !(n))N+1

!N (n)

��
:

In S1 we have 0 � 
(n) � !(n) �
p
!(n); which implies that

(
(n) � !(n))k

!k�1(n)
� 1 (k � 2);

so that we may use the expansion

e
x = 1 +

x

1!
+
x
2

2!
+ � � �+ x

N

N !
+O

�
e
jxjjxjN+1

�
(jxj � 1)

for each exponential factor in the above product. Thus we shall obtain, for n in

S1; �
1 +


(n)

!(n)

�!(n)
= 2!(n)e

1
2 (
(n)�!(n))�(15)

�
(
1 +

NX
k=1

2kX
r=k+1

dr;k
(
(n) � !(n))r

!k(n)
+ O

�
e
�(
(n)�!(n)) (
(n)� !(n))2N+2

!N+1(n)

�)

for any �xed integer N � 1 and suitable constants dr;k; which may be explicitly

evaluated. Now we substitute (15) in S1; and similarly as in the proof of (14) we

use (12) to show that the summation condition 
(n) � !(n) �
p
!(n) after this

substitution may be omitted. Hence we shall have (with N = M )

F (x) = O

�
x logx

(log logx)M+1

�
+(16)

+
X

2�n�x

2!(n)e
1
2 (
(n)�!(n))

(
1 +

MX
k=1

2kX
r=k+1

dr;k
(
(n) � !(n))r

!k(n)

)
:
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Here the terms corresponding to the sums over k and r are directly evaluated by

applying the Lemma with c = 2; d = e
1
2 ; and they will contribute the sum over

j on the right-hand side of (7). There remains yet in (16) the sum of f(n) :=

2!(n)e
1
2
(
(n)�!(n))

: It can be evaluated without di�culty directly, when one notes

that, for Re s > 1;

1X
n=1

f(n)n�s =
Y
p

0
@1 + 2

1X
j=1

e
1
2
(j�1)

p
�js

1
A = �

2(s)H(s);

where

H(s) =

1X
n=1

h(n)n�s =
Y
p

�
1� p

�s
�20@1 + 2

1X
j=1

e
1
2
(j�1)

p
�js

1
A

=
Y
p

�
1� p

�s
�2�

1 +
2

ps � e
1
2

�

is a Dirichlet series which is absolutely convergent for Re s > 1
log 4

:

Since �
2(s) =

1P
n=1

d(n)n�s (Re s > 1) and (4) holds, it follows that

X
n�x

f(n) =
X
n�x

X
�jn

d(�)h(
n

�
) =

X
n�x

h(n)
X
m�

x

n

d(m)(17)

=
X
n�x

h(n)
�
x

n
log

x

n
+ (2 � 1)

x

n
+O

�
(
x

n
)
1
2

��
= H(1)x logx+O(x);

which is su�ciently sharp for our purposes. Therefore if we insert (17) into (16)

we obtain the assertion of the Theorem.
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