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ON SIGN OF THE MATHEMATICAL

EXPECTATION OF AN ERROR

IN SIGNAL TRANSMISSION

Ilija Lazarevi�c

The error probability of signal transmission in Telecommunication systems

can not be expressed in terms of elementary functions. The mathematical

formulas are usually very complex ones. In recent years, various upper and

lower bound and computer algorithms have been developed to compute the

error probability. In this paper we investigate the sign of the integral (4),

which appears as a kernel in the formula for mathematical expectation of the

error in a binary telecommunication system. We are considering a real domain

only, because we are interested in certain inequalities. Knowing the sign of

this kernel, some estimates for the error probability can be found.

0. INTRODUCTION

A basic theoretical problem in Telecommunications is to �nd an error proba-
bility in digital signal transmission. Even in the most simple cases, this problem
is not easy to handle. Instead of using exact values, the usual procedure is to �nd
upper and lower bounds.

V. Prabhy [5] suggested a modi�ed Chernoff error for determining the
error probability of a pulse modulated signal with a presence of a Gaussian noise
and the interference. It was shown in [5] that the error probability in the case of a
binary system can be expressed as follows:

(1) P = exp(��� + �2�2=2)I;
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where

(2) I =
1

2�
hexp(��)Ki

(3) K =

+1Z
�1

� cos(x(� � (� � ��2))) + x sin(x(� � (�� ��2)))

�2 + x2
exp(�x2�2=2) dx;

where input symbols, chosen with equal a priori probability from a binary aphabet
f�;��g, are corrupted by additive zero-mean Gaussian noise of variance �2 and
independent additive interference �(t), such as intersymbol and cochanel interefer-
ence. Notation h�i is used for the mathematical expectation, and the parameter �
is a positive real number.

Upper and lower bounds on error probability are given in [5] in terms of the
moment generating functions of �. The bounds obtained here are not the best
possible ones. A better lower bound is conjectured in [6]. Further, in this paper
the authors noted that, under the assumptions from [5], when the Prabhu bound
is minimal, then the sine part of the integral (3) is positive. However, this is
con�rmed on some particular cases using computer evaluations. The aim of this
paper is further investigation of the sign of the sine part of (3).

1. SIGN OF THE STATISTICAL KERNEL

We will investigate the kernel

(4)

+1Z
�1

x sin(� � �)x

x2 + �2
e��

2
x
2
=2 dx;

which appears in (3), with � = � � ��2.

We will show that it is possible to determine the sign of (4) at least in some
particular cases. Let

(5) � = � � � ; a =
1

2
�2;

and let us investigate the function J : R 7! R, de�ned by

(6) J(�) =

+1Z
�1

x sin�x

x2 + �2
e�ax

2

dx;

for � > 0; a > 0; � > 0. Integral in (6) converges uniformly for a > 0. It is easy to
see that

(7) J 0(�) =

+1Z
�1

x2 cos�x

x2 + �2
e�ax

2

dx
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and

(8) J 00(�) � �2J(�) = b(�);

where

(9) b(�) = �
+1Z
�1

e�ax
2

x sin�x dx:

Starting from a well known result (see, for instance, [4])

(10)

+1Z
�1

e�x
2

cos�x dx =
p
�e�

�
2

4 ;

letting x = t=
p
a and di�erentiating with respect to �, we have:

(11) b(�) = �
p
��

2a
p
a
e�

�
2

4a :

Therefore, the function � 7! J(�) satis�es the di�erential equation (8), with
b(�) de�ned by (8). Besides, we have

(12) J(0) = 0

and

(13) J 0(0) =

+1Z
�1

x2

x2 + �2
e�ax

2

dx = 2

0
@

+1Z
0

e�ax
2

dx� �2I

1
A ;

where

(14) I =

+1Z
0

e�ax
2

x2 + �2
dx:

To �nd I, note that 1
x2+�2

=
+1R
0

e�(x2+�2)t dt and, therefore

I =

+1Z
0

0
@

+1Z
0

e�(x2+�2)t dt

1
A e�ax

2

dx =

+1Z
0

0
@

+1Z
0

e�(a+t)x2 dx

1
A e��

2
t dt:

By a change of variable t = y2=�2 � a, we get

I =

p
�

2
p
a+ t

+1Z
0

e��
2
t dt =

p
�ea�

2

�

+1Z
�
p
a

e�y
2

dy =
�ea�

2

2�
(1� erf(�

p
a));
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where

erf(x) =
2p
�

xZ
0

e�t
2

dt:

If we solve the di�erential equation (8) with conditions (12) and (13), we get
(using variations of constants):

(16) J(�) =
1

2�
e��D1(�)�� �

1

2�
e���D2(�)�� +

�

�
sh��;

where

(17) D1(�) = �
p
�

2a
p
a

�Z
0

�e�
�
2

4a
��� d�;

(18) D2(�) = �
p
�

2a
p
a

�Z
0

�e�
�
2

4a
+�� d�;

(19) � =

r
�

a
� ��ea�

2

(1� erf(�
p
a)):

Functions D1 and D2 may be expressed in terms of the error function, by an
appropriate change of variables in integrals appearing in (17) and in (18):

(20) D1(�) =

p
�p
a
(e�

�
2

4a
��� � 1) + ��ea�

2

�
erf

�
�

2
p
a
+ �

p
a

�
� erf(�

p
a)

�
:

(21) D2(�) =

p
�p
a
(e�

�
2

4a
+�� � 1)� ��ea�

2

�
erf

�
�

2
p
a
� �

p
a

�
+ erf(�

p
a)

�
:

Finally, using (16), (19), (20) and (21), we obtain the following expression
for J :

(22) J(�) = �ea�
2

�
1

2

�
e��erf

�
�

2
p
a
+ �

p
a

�
+ e���erf

�
�

2
p
a
� �

p
a

��
� sh��

�
:

Formula (22) can be also obtained by methods of Complex Analysis applied
to the integrals J(�) and J 0(�) (see, for example, [8], p. 511).

It seems that the expressions of the form A(t)erf (�t+ �) +B(t)erf (�t� �),
like the one in (22), naturally appear in some applied problems (see [7]).

Now we can formulate the following theorem.

Theorem 1. For a > 0 the following holds:

(23) sgn J(�) = sgn�

(24) J(0) = 0 ; J 0(0) > 0 ; J(+1) = 0+:
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Proof. The form of (22) is convenient for investigation of the sign of J . Since J

is an odd function, it su�ces to assume � � 0. Letting �� = t and 1=(2�
p
a) = �,

the inequality J(�) � 0 becomes equivalent to

(25)
1

2

�
eterf

�
�t+

1

2�

�
+ e�terf

�
�t� 1

2�

��
� sht:

In [1] it has been shown that (25) holds for every real t and � of the same
sign. Therefore, we have (23). Relations in (24) are straightforward consequences
of (6) and (13). The third relation can be obtained by taking limits in (22) and by
using the known value of the Poisson integral. 2

Corolary 1. By a mean value theorem we have

(26) J(�) = 2

+1Z
0

x sin�x

x2 + �2
e�ax

2

dx = 2M (�)

+1Z
0

e�ax
2

dx = 2M (�)

r
�

a
;

where M (�) is the mean value in [0;+1) of the function g(x) = x sin�x
x2+�2

: 2

Corolary 2. For � > 0 we proved that J(� > 0; therefore M (�) > 0. Further, it
is easy to see that jg(�)j � 1=(2�). So, we have

(27) 0 � J(�) � 1

2�

r
�

a
for � � 0 :

It is clear from (7) that J 0(0) > 0. However, if we �nd the derivative of J
according to (22), we get

(28) J 0(0) =

r
�

a
� ��ea�

2

(1� erf(�
p
a)) ;

and it is not at all obvious what sign of J should be. To see that from (28) we can
use an inequality due to R. D. Gordon [2]: R(x) � 1=x, where R(x) is so called
Mill's ratio :

R(x) = ex
2
=2

+1Z
x

e�t
2
=2 dx:

Indeed, using usual transformations, we have 1� erf(y) =
p

�

a
e�y

2

R(y
p
2);

and, by (28) we have

J 0(0) =

r
�

a
� �

p
2�R(�

p
2a) >

r
�

a
� �

p
2�

1

�
p
2a

= 0:

Conversely, using (7) and (28), we can derive the result of Gordon. 2
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2. SIGN OF MATHEMATICAL EXPECTATION

In this section we will use the statistical kernel J to investigate the sign of
the expectation.

Mathematical expectation from (2) can be written in the form

(29) E =
1

2�

+1Z
�1

e��w(�)J(� � �) d� :

We will assume that w is non-negative integrable even function on R and
� > 0. Letting � = t+ � in (29) we get

E =
e��

2�

0
@

0Z
�1

e�tw(t + �)J(t) dt +

+1Z
0

e��tw(t+ �)J(t) dt

1
A

and further, since J is an odd function :

(30) E =
e��

2�

+1Z
0

(e�tw(t + �) � e��tw(t� �))J(t) dt:

This form is useful for determining necessary (and sometimes also su�cient)
conditions for non-negativity of E. One such condition is

(31) e�tw(t+ �)� e��tw(t� �) � 0 (t � 0):

If w does not have real zeros, this condition takes the form

(32)
w(t� �)

w(t+ �)
� e2�t (t � 0):

These conditions can be used as tests in certain particular cases.

Example 1. Let w be an even non-decreasing function on R+ and let � > 0. Then
by the obvious inequality jt� �j � t+ � we have w(t� �) = w(jt� �j) � w(t+ �);
and the condition (32) is satis�ed.

Example 2. Let w(�) = 1 + sin2 �, � = �=2. In this case we have w(t � �)
= w(t+ �), and the condition (32) is satis�ed.

Example 3. Let w(�) = 1=(�2 + 1); � > 0. Then we have:

w(t � �)

w(t + �)
=

(t+ �)2 + 1

(t� �)2 + 1
= 1 +

4�t

(t � �)2 + 1
:

Using the inequalities e2�t � 1 + 2�t + 2�2t2 ; 1
(t��)2+1

� 1; we have

� = e2�t � w(t��)
w(t+�)

� 2t(� � 2�); so for � � 2�, the inequality (31) holds.
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Example 4. Let w(�) = g(�) if j�j � c and w(�) = 0 elsewhere; assume that g is
an even non-negative function. We can separate 3 cases (see Fig.1{Fig.3):

1� Case � � c. In this case the formula (30) becomes

E =
e��

2�

�+cZ
��c

�(t)J(t) dt �(t) = e�tw(t+ �) � e��tw(t � �):

In this case �(t) � 0 for t 2 [�� c; �+ c] and therefore E < 0.

2� Case � � �c. In this case we integrate over the interval [��� c;��+ c],
and �(t) � 0 there, so E > 0.

3� Case �c < � < c. If we assume � > 0, then we integrate over [0; �+ c]. In
this case �(t) is negative on [��+ c; �+ c], but need not be of a constant sign on
[0;��+ c]. So, in this case we can not reach any conclusion regarding the sign of
E.

Fig. 1

Fig. 2

Fig. 3
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