Univ. Beograd. Publ. Elektrotehn. Fak.
Ser. Mat. 4 (1993), 28-34.

A NOTE ON JENSEN'S DISCRETE INEQUALITY

Sever S. Dragomir, Borislav Crstici

A refinement of Jensen's discrete inequality and some natural applications are given.

1. INTRODUCTION

The main aim of this paper is to point out a refinement of the famous Jensen's inequality which says that:

$$
\begin{equation*}
f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \tag{1}
\end{equation*}
$$

where $f: I \subseteq \mathbf{R} \rightarrow \mathbf{R}$ is convex on the interval $I, x_{i} \in I$ and $p_{i} \geq 0(i=1, \ldots n)$ with $P_{n}>0$. Some applications in connections with arithmetic mean-geometric mean inequality, with Ky Fan's well-known inequality and with Belmann-Berg-ström-Fan quasi-linear functionals are also established.

In a recent paper [11], the following refinement of (1) has been given:

$$
\begin{align*}
& f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leq \frac{1}{P_{n}^{k+1}} \sum_{i_{1}, \ldots, i_{k+1}=1}^{n} p_{i_{1}} \cdots p_{i_{k+1}} f\left(\frac{1}{k+1} \sum_{j=1}^{k+1} x_{i_{j}}\right) \tag{2}\\
& \quad \leq \frac{1}{P_{n}^{k}} \sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \cdots p_{i_{k}} f\left(\frac{1}{k} \sum_{j=1}^{k} x_{i_{j}}\right) \leq \cdots \leq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)
\end{align*}
$$

where $f: C \subset X \mapsto \mathbf{R}$ is a convex mapping on a convex set C (C is a subset of a linear space $X) p_{i} \geq 0, x_{i} \in C(i=1, \ldots n)$ with $P_{n}:=\sum_{i=1}^{n} p_{i}>0$ and k is a positive integer such that $1 \leq k \leq n-1$.

[^0]Another improvement for weighted means was given in [6, Theorem 3] where it is shown that:

$$
\begin{equation*}
f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leq \frac{1}{P_{n}^{k}} \sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \cdots p_{i_{k}} f\left(\frac{1}{Q_{k}} \sum_{j=1}^{k} q_{j} x_{i_{j}}\right) \leq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \tag{3}
\end{equation*}
$$

for all $q_{j} \geq 0$ with $Q_{k}:=\sum_{j=1}^{k} q_{j}>0$.
For some interesting applications of these results we refer to [6-7] and [11] where further references are given.

2. MAIN RESULTS

We start start with the following result.
Theorem. Let f, x_{i}, p_{i} be as above and let α_{i}, β_{i} be nonnegative real numbers with $\alpha_{i}+\beta_{i}>0$ for all $i, j=1, \ldots, n$. Then we have the following inequalities:

$$
\begin{gather*}
f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leq \frac{1}{P_{n}{ }^{2}} \sum_{i, j=1}^{n} p_{i} p_{j} f\left(\frac{x_{i}+x_{j}}{2}\right) \tag{4}\\
\leq \frac{1}{P_{n}{ }^{2}} \sum_{i, j=1}^{n} p_{i} p_{j} \frac{1}{2}\left(f\left(\frac{\alpha_{i} x_{i}+\beta_{j} x_{j}}{\alpha_{i}+\beta_{j}}\right)+f\left(\frac{\beta_{j} x_{i}+\alpha_{i} x_{j}}{\alpha_{i}+\beta_{j}}\right)\right) \leq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) .
\end{gather*}
$$

Proof. The Jensen inequality for double sums yields

$$
f\left(\frac{1}{P_{n}^{2}} \sum_{i, j=1}^{n} p_{i} p_{j}\left(\frac{x_{i}+x_{j}}{2}\right)\right) \leq \frac{1}{P_{n}^{2}} \sum_{i, j=1}^{n} p_{i} p_{j} f\left(\frac{x_{i}+x_{j}}{2}\right)
$$

Since

$$
\frac{1}{P_{n}^{2}} \sum_{i, j=1}^{n} p_{i} p_{j}\left(\frac{x_{i}+x_{j}}{2}\right)=\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}
$$

the first inequality in (4) is proven.
By the convexity of f on C we have:

$$
\frac{1}{2}\left(f\left(\frac{\alpha_{i} x_{i}+\beta_{j} x_{j}}{\alpha_{i}+\beta_{j}}\right)+f\left(\frac{\beta_{j} x_{i}+\alpha_{i} x_{j}}{\alpha_{i}+\beta_{j}}\right)\right) \geq f\left(\frac{x_{i}+x_{j}}{2}\right)
$$

for all $i, j=1, \ldots, n$. By multiplying this inequality with $p_{i} p_{j} \geq 0(i, j=1, \ldots, n)$ and summing over i and j (from 1 to n), we derive the second inequality in (4).

To prove the last inequality in (4), we observe that:

$$
f\left(\frac{\alpha_{i} x_{i}+\beta_{j} x_{j}}{\alpha_{i}+\beta_{j}}\right) \leq \frac{\alpha_{i} f\left(x_{i}\right)+\beta_{j} f\left(x_{j}\right)}{\alpha_{i}+\beta_{j}}
$$

and

$$
f\left(\frac{\alpha_{i} x_{j}+\beta_{j} x_{i}}{\alpha_{i}+\beta_{j}}\right) \leq \frac{\alpha_{i} f\left(x_{j}\right)+\beta_{j} f\left(x_{i}\right)}{\alpha_{i}+\beta_{j}}
$$

for all $i, j=1, \ldots, n$. By addition we get

$$
\frac{1}{2}\left(f\left(\frac{\alpha_{i} x_{i}+\beta_{j} x_{j}}{\alpha_{i}+\beta_{j}}\right)+f\left(\frac{\beta_{j} x_{i}+\alpha_{i} x_{j}}{\alpha_{i}+\beta_{j}}\right)\right) \leq \frac{f\left(x_{i}\right)+f\left(x_{j}\right)}{2}
$$

for all $i, j=1, \ldots, n$.
By multiplying this inequality with $p_{i} p_{j} \geq 0$ and summing over i and j (from 1 to n), we obtain the desired inequality.

Now, let consider the mapping $F:[0,1] \rightarrow \mathbf{R}$ given by

$$
F(t):=\frac{1}{P_{n}^{2}} \sum_{i, j=1}^{n} p_{i} p_{j} f\left(t x_{i}+(1-t) x_{j}\right)
$$

where $f: I \subseteq \mathbf{R} \rightarrow \mathbf{R}$ is as above, $x_{i} \in I$ and $p_{i} \geq 0(i=1, \ldots, n)$ with $P_{n}>0$. Then the following corollary holds.
Corollary. Under above assumptions, for all $t \in[0,1]$ we have the inequality:

$$
f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leq \frac{1}{P_{n}^{2}} \sum_{i, j=1}^{n} p_{i} p_{j} f\left(\frac{x_{i}+x_{j}}{2}\right) \leq F(t) \leq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)
$$

The proof is obvious from the above theorem (choosing $\alpha_{i}=t, \beta_{j}=1-t$ $(i, j=1, \ldots, n))$. We will omit the details.
Remark. It is easy to see, from the above corollary, that:

$$
\sup _{t \in[0,1]} F(t)=F(0)=F(1)=\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)
$$

and

$$
\inf _{t \in[0,1]} F(t)=f\left(\frac{1}{2}\right)=\frac{1}{P_{n}^{2}} \sum_{i, j=1}^{n} p_{i} p_{j} f\left(\frac{x_{i}+x_{j}}{2}\right) .
$$

For other refinements of Jensen's inequality see the paper [5] where further references are given.

3. APPLICATIONS

I. 1. Let $x_{i}, p_{i} \geq 0(i=1, \ldots, n)$ with $P_{n}>0$. Then the following refinement of arithmetic mean-geometric mean inequality holds:

$$
\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i} \geq\left(\prod_{i, j=1}^{n}\left(\frac{x_{i}+x_{j}}{2}\right)^{p_{i} p_{j}}\right)^{1 / P_{n}^{2}}
$$

$$
\geq\left(\prod_{i, j=1}^{n}\left(\frac{\left(\alpha_{i} x_{i}+\beta_{j} x_{j}\right)^{1 / 2}\left(\beta_{j} x_{i}+\alpha_{i} x_{j}\right)^{1 / 2}}{\alpha_{i}+\beta_{j}}\right)^{p_{i} p_{j}}\right)^{1 / P_{n}^{2}} \geq\left(\prod_{i=1}^{n} x_{i}^{p_{i}}\right)^{1 / P_{n}}
$$

for all $\alpha_{i}, \beta_{j} \geq 0$ so that $\alpha_{i}+\beta_{i}>0(i, j=1, \ldots, n)$. The equality holds in all inequalities if and only if $x_{1}=x_{2}=\cdots=x_{n}$.
2. Let $x_{i} \in \mathbf{R}, p_{i} \geq 0(i=1, \ldots, n)$ with $P_{n}>0$ and $p \geq 1$. Then for all α_{i} and $\beta_{j}(i, j=1, \ldots, n)$ as above, we have:

$$
\begin{aligned}
& \sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{p} \geq P_{n}^{p-2} \sum_{i, j=1}^{n} p_{i} p_{j}\left|\frac{x_{i}+x_{j}}{2}\right|^{p} \\
\geq & P_{n}^{p-2} \sum_{i, j=1}^{n} p_{i} p_{j} \frac{1}{2}\left(\left|\frac{\alpha_{i} x_{i}+\beta_{j} x_{j}}{\alpha_{i}+\beta_{j}}\right|^{p}+\left|\frac{\beta_{j} x_{i}+\alpha_{i} x_{j}}{\alpha_{i}+\beta_{j}}\right|^{p}\right) \geq P_{n}^{p-1} \sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{p} .
\end{aligned}
$$

3. Let $x_{i} \in(0,1 / 2](i=1, \ldots, n)$. Then the following refinement of the well-known inequality due to Ky Fan [3] is valid:

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i} / \sum_{i=1}^{n}\left(1-x_{i}\right) \geq \prod_{i, j=1}^{n}\left(\left(x_{i}+x_{j}\right) /\left(2-x_{i}-x_{j}\right)\right)^{1 / n^{2}} \\
\geq & \left(\prod_{i, j=1}^{n}\left(\frac{\left(\alpha_{i} x_{i}+\beta_{j} x_{j}\right)\left(\beta_{j} x_{i}+\alpha_{i} x_{j}\right)}{\left(\left(1-\alpha_{i}\right) x_{i}+\left(1-\beta_{j}\right) x_{j}\right)\left(\left(1-\beta_{j}\right) x_{i}+\left(1-\alpha_{i}\right) x_{j}\right)}\right)^{1 / 2}\right)^{1 / n^{2}} \\
\geq & \left(\prod_{i=1}^{n} x_{i} / \prod_{i=1}^{n}\left(1-x_{i}\right)\right)^{1 / n}
\end{aligned}
$$

for all $\alpha_{i}, \beta_{j} \geq 0$ so that $\alpha_{i}+\beta_{j}>0(i, j=1, \ldots, n)$. The equality holds if and only if $x_{1}=\cdots=x_{n}$.
4. In the recent paper [1], H. Alzer has established the following converse of Ky Fan's inequality:

$$
\sum_{i=1}^{n} x_{i} / \sum_{i=1}^{n}\left(1-x_{i}\right) \leq \prod_{i=1}^{n}\left(x_{i} /\left(1-x_{i}\right)\right)^{x_{i} / \sum_{i=1}^{n} x_{k}}
$$

where $x_{i} \in(0,1)(i=1, \ldots, n)$ and the equality holds in the above inequality if and only if $x_{1}=\cdots=x_{n}$. We may improve this fact as in the sequel:

$$
\sum_{i=1}^{n} x_{i} / \sum_{i=1}^{n}\left(1-x_{i}\right) \leq\left(\prod_{i, j=1}^{n}\left(\left(x_{i}+x_{j}\right) /\left(2-x_{i}-x_{j}\right)\right)^{\left(x_{i}+x_{j}\right) / 2}\right)^{1 /\left(n \sum_{k=1}^{n} x_{k}\right)}
$$

$$
\begin{aligned}
& \leq \prod_{i, j=1}^{n}\left(\left(\frac{\alpha_{i} x_{i}+\beta_{j} x_{j}}{\left(1-\alpha_{i}\right) x_{i}+\left(1-\beta_{j}\right) x_{j}}\right)^{\frac{\alpha_{i} x_{i}+\beta_{j} x_{j}}{2\left(\alpha_{i}+\beta_{j}\right)}}\right. \\
& \left.\quad \times\left(\frac{\alpha_{i} x_{j}+\beta_{j} x_{i}}{\left(1-\alpha_{i}\right) x_{j}+\left(1-\beta_{j}\right) x_{i}}\right)^{\frac{\alpha_{i} x_{j}+\beta_{j} x_{i}}{2\left(\alpha_{i}+\beta_{j}\right)}}\right)^{1 /\left(n \sum_{k=1}^{n} x_{k}\right)} \\
& \quad \leq \prod_{i=1}^{n}\left(x_{i} /\left(1-x_{i}\right)\right)^{x_{i} /\left(\sum_{k=1}^{n} x_{k}\right)}
\end{aligned}
$$

where $\alpha_{i}, \beta_{j}(i, j=1, \ldots, n)$ are as above.
The proofs of the above statements follow from (2) for the convex mapings: $f(x):=-\ln x, x>0 ; f(x):=|x|^{p}, x \in \mathbf{R} ; f(x):=-\ln (x /(1-x)), x \in(0,1 / 2]$ and $f(x):=\ln (x /(1-x))^{x}, x \in(0,1)$.
II. Now, let X be a real linear space and K be a clin in X, i.e., a subset of X satisfying the conditions:
$\left(\mathrm{K}_{1}\right) \quad x, y \in K$ imply $x+y \in K$;
$\left(\mathrm{K}_{2}\right) \quad x \in K, \alpha \geq 0$ imply $\alpha x \in K$.
Let us also suppose that $\varphi: K \rightarrow \mathbf{R}$ is a quasi-linear functional on K, i.e. a mapping which satisfies the assumption:

$$
\begin{equation*}
\varphi(\alpha x+\beta y) \leq(\geq) \alpha \varphi(x)+\beta \varphi(y) \tag{5}
\end{equation*}
$$

for all $x, y \in K$ and $\alpha, \beta \geq 0$.
We observe that such a functional is a convex (concave) maping on K but the converse implication is not true in general. We also observe that the following inequality holds:

$$
\begin{equation*}
\varphi\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \leq(\geq) \sum_{i=1}^{n} p_{i} \varphi\left(x_{i}\right) \tag{6}
\end{equation*}
$$

for all $p_{i} \geq 0$ and $x_{i} \in K(i=1, \ldots, n)$.
By the use of the above theorem, we can give the following improvement of (6):

Let φ be as above, $x_{i} \in K, p_{i} \geq 0 \quad(i=1, \ldots, n)$ and let α_{i}, β_{i} be nonnegative real numbers with $\alpha_{i}+\beta_{i}>0$ for all $i, j=1, \ldots, n$. Then we have the inequalities:

$$
\begin{align*}
& \varphi\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \leq(\geq) \frac{1}{2 P_{n}} \sum_{i, j=1}^{n} p_{i} p_{j} \varphi\left(x_{i}+x_{j}\right) \tag{7}\\
\leq & (\geq) \frac{1}{P_{n}} \sum_{i, j=1}^{n} \frac{p_{i} p_{j}}{\alpha_{i}+\beta_{j}} \cdot \frac{\varphi\left(\alpha_{i} x_{i}+\beta_{j} x_{j}\right)+\varphi\left(\beta_{j} x_{i}+\alpha_{i} x_{j}\right)}{2} \leq(\geq) \sum_{i=1}^{n} p_{i} \varphi\left(x_{i}\right) .
\end{align*}
$$

As in [13], we shall use the following notations:
$\mathcal{M}=\{M \mid M$ is a positive definite matrix of order $n\}$,
$|M|=$ the determinant of the matrix M,
$|M|_{k}=\prod_{j=1}^{k} \lambda_{j}, k=1, \ldots, n, \quad$ where $\lambda_{1}, \ldots, \lambda_{k}$ are the eigenvalues of M with $\lambda_{1} \leq \cdots \leq \lambda_{n},|M|_{n}=|M| ;$
$M(j)=$ the submatrix of M obtained by deleting the $j^{\text {th }}$ row and $j^{\text {th }}$ column of the matrix M;
$M[k]=$ the principal submatrix of M formed by taking the first k rows and columns of $M ; M[n]=M, M[n-1]=M(n), M[0]=$ the identity matrix;
BBF $=$ the class of Bellman-Besgström-Fan quasi-linear functionals σ_{i}, δ_{j} and ν_{k} defined on M by:

$$
\begin{array}{ll}
\sigma_{i}(M):=|M|_{i}^{1 / i}, & i=1, \ldots, n \\
\delta_{j}(M):=|M| /|M(j)|, & j=1, \ldots, n: \\
\nu_{k}(M):=(|M| /|M[k]|)^{1 /(n-k)}, & k=1, \ldots, n
\end{array}
$$

respectively.
It is evident that M is closed under addition and multiplication by a positive number, i.e. M is a clin. Now, quasi-linearity of BBF-functionals follows from results given in [13]:

$$
\varphi\left(p M_{1}+q M_{2}\right) \geq p \varphi\left(M_{1}\right)+q \varphi\left(M_{2}\right)
$$

for all $M_{1}, M_{2} \in \mathcal{M}, p, q \geq 0$ and $\varphi \in \operatorname{BBF}$ (see also [8]).
In [13], C.L.Wang has obtained the following inequality:

$$
\varphi\left(\sum_{i=1}^{m} p_{i} M_{i}\right) \geq \sum_{i=1}^{m} p_{i} \varphi\left(M_{i}\right) \geq P_{m} \prod_{i=1}^{m}\left(\varphi\left(M_{i}\right)\right)^{p_{i} / P_{m}}
$$

$p_{i}>0(i=1, \ldots, m)$, which is an interpolation inequality for

$$
\begin{equation*}
\varphi\left(\frac{1}{P_{m}} \sum_{i=1}^{m} p_{i} M_{i}\right) \geq \prod_{i=1}^{m}\left(\varphi\left(M_{i}\right)\right)^{p_{i} / P_{m}} \tag{8}
\end{equation*}
$$

Note that (8) is also a generalization of a rezult from [9].
By the use of inequality (7), we can improve (8) as follows:

$$
\begin{aligned}
\sum_{i=1}^{m} p_{i} \varphi\left(M_{i}\right) & \geq \frac{1}{P_{m}} \sum_{i, j=1}^{m} \frac{p_{i} p_{j}}{\alpha_{i}+\beta_{j}} \cdot \frac{\varphi\left(\alpha_{i} M_{i}+\beta_{j} M_{j}\right)+\varphi\left(\beta_{j} M_{i}+\alpha_{i} M_{j}\right)}{2} \\
& \geq \frac{1}{2 P_{m}} \sum_{i, j=1}^{m} p_{i} p_{j} \varphi\left(M_{i}+M_{j}\right) \geq \varphi\left(\sum_{i=1}^{m} p_{i} M_{i}\right)
\end{aligned}
$$

where $M_{i} \in \mathcal{M}, p_{i} \geq 0, \alpha_{i}+\beta_{i}>0(i, j=1, \ldots, m)$ and $\varphi \in \operatorname{BBF}$.

REFERENCES

1. H. Alzer: A converse of Ky Fan's inequalities. C.R. Math. Rep. Acad. Sci. Canada, 9 (1989), 1-3.
2. R. E. Barlow, A. W. Marschall, F. Proschan: Some inequalities for starshaped and convex functions. Pacific J. Math., 29 (1969), 14-42.
3. E. F. Beckenbach, R. Bellman: Inequalities, 4-th ed., Springer Verlag, Berlin, 1983.
4. S. S. Dragomir: A refinement of Jensen inequality. G. M. Metod. (Bucharest), 10 (1989), 190-191.
5. S. S. Dragomir, N. M. Ionescu: On some inequalities for convex dominated functions. Anal. Num. Theor. Approx., 19 (1990), 21-28.
6. S. S. Dragomir: An improvement of Jensen's inequality. Bull. Math. Soc. Sci. Math. Roumanie, 34 (82) (1990), 291-296.
7. S.S.Dragomir: Some refinements of Ky Fan's inequality. J. Math. Anal. Appl., 163 (1992), 317-321.
8. D. S. Mitrinović, J. E. Pečarić: Determinental inequalities of Jensen's type. An. Öster. Akad. Wiss. Math. Klasse 125 (1988), 75-78.
9. L. Mirsky: An inequality for positive definite matrices. Amer. Math. Montly, 62 (1955), 428-430.
10. J. E. Pečarić: Inverse of Jensen-Steffensen's inequality. Glas. Mat., 1. (1981), 229-233.
11. J. E. Pečarić, S. S. Dragomir: A refinement of Jensen inequality and applications. Studia Math. Univ. „Babes-Bolyai", 34 (1) (1989), 15-19.
12. C. L. Wang: On a Ky Fan inequality for the complementary A.-G. type and its variants. J. Math. Anal. Appl., 73 (1980), 501-505.
13. C. L. Wang: Extension of determinantal inequalities. Utilitas Math., 13, (1978), 201-210.

Department of Mathematics,
University of Timişoara,
B-dul V. Pârvan 4,
R-1900 Timişoara,
România

Department of Mathematics,
Technical University,
P-ţa Horaţiu 1,
R-1900 Timişoara,
România

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification: 26D 15

