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A NOTE ON

JENSEN'S DISCRETE INEQUALITY

Sever S. Dragomir, Borislav Crstici

A re�nement of Jensen's discrete inequality and some natural applications are

given.

1. INTRODUCTION

The main aim of this paper is to point out a re�nement of the famous

Jensen's inequality which says that:
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where f : I � R ! R is convex on the interval I; xi 2 I and pi � 0(i = 1; : : : n)

with Pn > 0: Some applications in connections with arithmetic mean{geometric

mean inequality, with Ky Fan's well-known inequality and with Belmann{Berg-

str�om{Fan quasi-linear functionals are also established.

In a recent paper [11], the following re�nement of (1) has been given:
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where f : C � X 7! R is a convex mapping on a convex set C (C is a subset of a

linear space X) pi � 0; xi 2 C (i = 1; : : : n) with Pn :=
P

n

i=1 pi > 0 and k is a

positive integer such that 1 � k � n� 1:
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Another improvement for weighted means was given in [6, Theorem 3] where

it is shown that:
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for all qj � 0 with Qk :=
kP

j=1

qj > 0:

For some interesting applications of these results we refer to [6{7] and [11]

where further references are given.

2. MAIN RESULTS

We start start with the following result.

Theorem. Let f; xi; pi be as above and let �i; �i be nonnegative real numbers with

�i + �i > 0 for all i; j = 1; : : : ; n: Then we have the following inequalities:
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Proof. The Jensen inequality for double sums yields
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the �rst inequality in (4) is proven.

By the convexity of f on C we have:
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for all i; j = 1; : : : ; n: By multiplying this inequality with pipj � 0 (i; j = 1; : : : ; n)

and summing over i and j (from 1 to n), we derive the second inequality in (4).

To prove the last inequality in (4), we observe that:
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and
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for all i; j = 1; : : : ; n: By addition we get
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for all i; j = 1; : : : ; n:

By multiplying this inequality with pipj � 0 and summing over i and j (from

1 to n), we obtain the desired inequality.

Now, let consider the mapping F : [0; 1]! R given by

F (t) :=
1

Pn
2

nX
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pipjf(txi + (1� t)xj);

where f : I � R ! R is as above, xi 2 I and pi � 0 (i = 1; : : : ; n) with Pn > 0:

Then the following corollary holds.

Corollary. Under above assumptions, for all t 2 [0; 1] we have the inequality:
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The proof is obvious from the above theorem (choosing �i = t; �j = 1 � t

(i; j = 1; : : : ; n)): We will omit the details.

Remark. It is easy to see, from the above corollary, that:
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For other re�nements of Jensen's inequality see the paper [5] where further

references are given.

3. APPLICATIONS

I. 1. Let xi; pi � 0 (i = 1; : : : ; n) with Pn > 0: Then the following re�nement

of arithmetic mean{geometric mean inequality holds:
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for all �i; �j � 0 so that �i + �i > 0 (i; j = 1; : : : ; n): The equality holds in all

inequalities if and only if x1 = x2 = � � � = xn:

2. Let xi 2 R; pi � 0 (i = 1; : : : ; n) with Pn > 0 and p � 1: Then for all �i
and �j (i; j = 1; : : : ; n) as above, we have:
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3. Let xi 2 (0; 1=2] (i = 1; : : : ; n): Then the following re�nement of the

well-known inequality due to Ky Fan [3] is valid:
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for all �i; �j � 0 so that �i + �j > 0 (i; j = 1; : : : ; n): The equality holds if and

only if x1 = � � � = xn:

4. In the recent paper [1], H. Alzer has established the following converse

of Ky Fan's inequality:
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where xi 2 (0; 1) (i = 1; : : : ; n) and the equality holds in the above inequality if

and only if x1 = � � � = xn: We may improve this fact as in the sequel:
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where �i; �j (i; j = 1; : : : ; n) are as above.

The proofs of the above statements follow from (2) for the convex mapings:

f(x) := � lnx; x > 0; f(x) := jxjp; x 2 R; f(x) := � ln(x=(1 � x)); x 2 (0; 1=2]

and f(x) := ln(x=(1� x))x; x 2 (0; 1):

II. Now, let X be a real linear space and K be a clin in X; i.e., a subset of

X satisfying the conditions:

(K1) x; y 2 K imply x+ y 2 K;

(K2) x 2 K; � � 0 imply �x 2 K:

Let us also suppose that ' : K ! R is a quasi-linear functional on K, i.e. a

mapping which satis�es the assumption:

(5) '(�x+ �y) � (�)�'(x) + �'(y);

for all x; y 2 K and �; � � 0:

We observe that such a functional is a convex (concave) maping on K but

the converse implication is not true in general. We also observe that the following

inequality holds:

(6) '

 
nX
i=1

pixi

!
� (�)

nX
i=1

pi'(xi);

for all pi � 0 and xi 2 K (i = 1; : : : ; n):

By the use of the above theorem, we can give the following improvement of

(6):

Let ' be as above, xi 2 K; pi � 0 (i = 1; : : : ; n) and let �i; �i be non-

negative real numbers with �i + �i > 0 for all i; j = 1; : : : ; n: Then we have the

inequalities:
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As in [13], we shall use the following notations:

M = fM
��M is a positive de�nite matrix of order ng;

jM j = the determinant of the matrix M;

jM jk =
kQ

j=1

�j ; k = 1; : : : ; n; where �1; : : : ; �k are the eigenvalues of M

with �1 � � � � � �n; jM jn = jM j;

M (j) = the submatrix ofM obtained by deleting the jth row and jth column

of the matrix M ;

M [k] = the principal submatrix of M formed by taking the �rst k rows and

columns of M ; M [n] = M; M [n� 1] = M (n); M [0] = the identity

matrix;

BBF = the class of Bellman{Besgstr�om{Fan quasi-linear functionals

�i; �j and �k de�ned on M by:

�i(M ) := jM ji
1=i
; i = 1; : : : ; n;

�j(M ) := jM j=jM (j)j; j = 1; : : : ; n :

�k(M ) := (jM j=jM [k]j)1=(n�k); k = 1; : : : ; n;

respectively.

It is evident that M is closed under addition and multiplication by a positive

number, i.e. M is a clin. Now, quasi-linearity of BBF{functionals follows from

results given in [13]:

'(pM1 + qM2) � p'(M1) + q'(M2);

for all M1;M2 2M; p; q � 0 and ' 2 BBF (see also [8]).

In [13], C.L.Wang has obtained the following inequality:
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Note that (8) is also a generalization of a rezult from [9].

By the use of inequality (7), we can improve (8) as follows:
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where Mi 2M; pi � 0; �i + �i > 0 (i; j = 1; : : : ; m) and ' 2 BBF:
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