Univ. Beograd. Publ. Elektrotehn. Fak.

ON A ZIRAKZADEH INEQUALITY RELATED TO TWO TRIANGLES INSCRIBED ONE IN THE OTHER

Ji Chen, Xue-Zhi Yang

We note that a conjecture from [1] (inequality XII. 1.20, p. 347) was proved in 1960. by A. Zirakzadeh. Stronger inequalities are obtained in this paper.

A conjecture due to Mao-Qi Tao and Jing-Zhong Zhang [1, p. 347] is stated as follows:

Let three points P, Q, R be on the sides $B C, C A, A B$ of a triangle $A B C$, respectively. If $Q A+A R=R B+B P=P C+C Q$, then

$$
\begin{equation*}
Q R+R P+P Q \geq \frac{1}{2}(a+b+c) \tag{1}
\end{equation*}
$$

with equality if and only if the triangle is equilateral and P, Q, R are the midpoints of the sides of $A B C$.

However, the inequality (1) was first proved in 1960. by A. Zirakzadeh [2], and his proof is very difficult. A simpler proof was given by Zhen-Bing Zeng [3].

Now, we shall prove the following theorem:
Theorem. We have

$$
\begin{equation*}
Q R+R P+P Q \geq \frac{a+b+c}{3}\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
(Q R+R P+P Q)^{3} \geq \frac{9}{8}\left(a^{3}+b^{3}+c^{3}\right) \tag{3}
\end{equation*}
$$

[^0]with equality if and only if the triangle is equilateral and P, Q, R are the midpoints of the sides of $A B C$.
Proof. Let $M N$ be the projection of $Q R$ on the side $B C$. Then
$$
Q R \geq M N=a-(B R \cdot \cos B+C Q \cdot \cos C)
$$

In the same way, we have

$$
R P \geq b-(C P \cdot \cos C+A P \cdot \cos A), \quad P Q \geq c-(A Q \cdot \cos A+B P \cdot \cos B)
$$

and therefore

$$
\begin{equation*}
Q R+R P+P Q \geq \frac{1}{3}(a+b+c)(3-\cos A-\cos B-\cos C) . \tag{4}
\end{equation*}
$$

It is known that $\cos A+\cos B+\cos C=\frac{R+r}{R}$ (see [1, p. 55]). Therefore, (4) is equivalent to $Q R+R P+P Q \geq \frac{2 s(2 R-r)}{3 R}$.

On the other hand

$$
\begin{aligned}
& \frac{a+b+c}{3}\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right) \\
= & \frac{(a+b+c)(a(a+b)(a+c)+b(b+c)(b+a)+c(c+a)(c+b))}{3(b+c)(c+a)(a+b)} \\
= & \frac{(a+b+c)\left(a^{3}+b^{3}+c^{3}+a^{2} b+a^{2} c+b^{2} c+b^{2} a+c^{2} a+c^{2} b+3 a b c\right)}{3(b+c)(c+a)(a+b)}
\end{aligned}
$$

and it is know that

$$
a^{3}+b^{3}+c^{3}=2 s\left(s^{2}-r^{2}-6 R r\right)
$$

and

$$
(b+c)(c+a)(a+b)=2 s\left(s^{2}+r^{2}+2 R r\right)
$$

(see [1], pp. 52-53). Therefore, (2) and (3) are equivalent to

$$
Q R+R P+P Q \geq \frac{4 s\left(s^{2}-r^{2}-R r\right)}{3\left(s^{2}+r^{2}+2 R r\right)}
$$

respectively. We only need to prove the following two inequalities:

$$
\begin{equation*}
\frac{2 s(2 R-r)}{3 R} \geq \frac{4 s\left(s^{2}-r^{2}-R r\right.}{3\left(s^{2}+r^{2}+2 R r\right)} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{2 s(2 R-r)}{3 r}\right)^{3} \geq \frac{9}{4} s\left(s^{2}-3 r^{2}-6 R r\right) \tag{6}
\end{equation*}
$$

The inequality (5) is equivalent to $(2 R-r)\left(s^{2}+r^{2}+2 R r\right) \geq 2 R\left(s^{2}-r^{2}-R r\right)$, i.e.

$$
\begin{equation*}
r\left(6 R^{2}+2 R r-r^{2}-s^{2}\right) \geq 0 \tag{7}
\end{equation*}
$$

Using the Gerretsen inequality [1, p. 45]

$$
\begin{equation*}
s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \tag{8}
\end{equation*}
$$

and Chapple-Euler inequality $R \geq 2 r$, then (7) follows, and we have proved the inequality (2).

The inequality (6) is equivalent to

$$
\begin{align*}
H\left(s^{2}\right) & \equiv 32 s^{2}(2 R-r)^{3}-243 R^{3}\left(s^{2}-3 r^{2}-6 R r\right) \tag{9}\\
& =32(2 R-r)^{3}-243 R^{3} s^{2}+243 R^{3}\left(3 r^{2}+6 R r\right) \geq 0
\end{align*}
$$

If $32(2 R-r)^{3} \geq 243 R^{3}$, then (9) is obvious; if $32(2 R-r)^{3}<243 R^{3}$, then by the Gerretsen inequality (8), we only need to prove $H\left(4 R^{2}+4 R r+3 r^{2}\right) \geq 0$. Now

$$
\begin{aligned}
H\left(4 R+4 R r+3 r^{2}\right) & =32\left(4 R^{2}+4 R r+3 r^{2}\right)(2 R-r)^{3}-243 R^{3}\left(4 R^{2}-2 R r\right) \\
& =2(2 R-r)(R-2 r)\left(13 R^{3}+26 R^{2} r+52 R r^{2}-24 r^{3}\right) \geq 0
\end{aligned}
$$

and (9) follows. Hence (3) is verified.

REFERENCES

1. D. S. Mitrinović, J. E. Pečarić, V. Volenec: Recent Advances in Geometric Inequalities. Kluwer Academic Publishers, 1989.
2. A. Zirakzadeh: A property of a triangle inscribed in a convex curve. Preprint.
3. Zhen-Bing Zeng: A geometric inequality(Chinese). Kexue Tongbao, 34 (1989), 809810.

Department of Mathematics,

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification: 51 M 16

