CHARACTERIZATION OF LINEAR INVOLUTIONS

Ali R. Amir-Moéz, Donald W. Palmer

In this note we give a brief account of linear involutions.
Let A be a linear transformation on an n-dimensional unitary space such that $A^{p}=I$, where p is the least positive integer, and I is the identity. Then A is called a linear involution of order p. Properties of linear involutions have been studied and can be found scattered in the literature. In this note we give a brief account of them.

Definitions and Notation. An n-dimensional unitary space will be denoted by E_{n}. Greek and Latin letters will denote vectors and scalars respectively. Linear transformations will be indicated by capital letters. Let \mathcal{B} be a basis for E_{n}. Then the matrix of a linear transformation A with respect to \mathcal{B} will be $[A]_{\mathcal{B}}$. In what follows all transformations are linear. The inner product of ξ and η will be denoted by $\langle\xi, \eta\rangle$. The adjoint A^{*} of a linear transformation A is defined by $\langle A \xi, \eta\rangle=\left\langle\xi, A^{*} \eta\right\rangle$. The direct sum of two subspaces S and T will be denoted by $S \oplus T$. Other definitions will be given whenever needed.
2. Proper Values of a Linear Involution. Let A be a linear involution of order p on E_{n}. Then every proper value od A is a p-th root of unity.
Proof. Let ξ be a proper vector of A corresponding to proper value a. Then $A \xi=a \xi, \xi \neq 0$, which implies $A^{p} \xi=a^{p} \xi=\xi, \quad \xi \neq 0$, or $\left(a^{p}-1\right) \xi=0, \quad \xi \neq 0$. Thus $a^{p}-1=0$, which proves the proposition.
3. Theorem. Let $A \neq I$ be a Hermitian transformation on E_{n} such that $A^{k}=$ $I, k \geq 2$. Then A is an involution of order 2 .

Since the proper values of A are real, they must be ± 1. (Note that A is a symmetry with respect to a proper subspace of E_{n}.)
4. Theorem. Let A be a positive transformation on E_{n} such that $A^{p}=I$. Then $A=I$.

[^0]Since the proper values of A are positive and also roots of unity, they all must be 1 . Thus $A=I$.
5. Theorem. Let A be a normal transformation and an involution of order p on E_{n}. Then A is unitary (an isometry).
Proof. Since $A^{*} A=A A^{*}$ and $A^{p}=I$, and $\left(A^{*} A\right)^{p}=I$. It is clear that $A^{*} A$ is positive, and thus by Theorem 4 we must have $A^{*} A=I$, which proves the theorem.
6. Theorem. A necessary and sufficient condition for a linear transformation A on E_{n} to be an involution of order p is that $A=a_{1} P_{1}+\cdots+a_{k} P_{k}$, where $a_{i}, i=1, \ldots, k$ is a p-th root of unity, and P_{1}, \ldots, P_{k} are projections such that $P_{i} P_{j}=0, i \neq j$ and $P_{1}+\cdots+P_{k}=I$.
Proof. The sufficiency is obvious.
Now let $A^{p}=I$, and a_{1}, \ldots, a_{k} be distinct proper values of A with algebraic multiplicies m_{1}, \ldots, m_{k} respectively. Then there exist subspaces S_{1}, \ldots, S_{k} such that $E_{n}=S_{1} \oplus \cdots \oplus S_{k}$, each S_{i} is invariant under A, and $A=a_{i} I+N_{i}$ on $S_{i}[\mathbf{1}]$. Essentially, we are using the Jordan canonical form of A. To prove the necessity, we must show that $N_{i}=0, i=1, \ldots, k$.

Suppose for some i the index of nilpotency of N_{i} is $m \geq 2$. Then there is an $\eta \in S_{i}, \eta \neq 0$ such that $N_{i}^{m} \eta=0$, and $N_{i}^{m-1} \eta \neq 0$. Let $N_{i}{ }^{m-1} \eta=\eta_{1} \neq 0$ and $N_{i}{ }^{m-2} \eta=\eta_{2} \neq 0$. Then $A \eta_{1}=a_{i} \eta_{1}$, and $A \eta_{2}=\eta+a_{1} \eta_{2}$. This implies that $A^{k} \eta_{1}=a_{i}^{k} \eta_{1}, \quad A^{k} \eta_{2}=k a_{i}{ }^{k-1} \eta_{1}+a_{i}{ }^{k} \eta_{2}$, where k is a positive integer. In particular $a^{p} \eta_{2}=p a_{i}{ }^{p-1} \eta_{1}+a_{i}{ }^{p} \eta_{2}$. Since $A^{p}=I$ and $a_{i}{ }^{p-1}=1$, the above equality implies $a_{i}{ }^{p-1} \eta_{1}=0$. This contradicts the fact that $a_{i} \neq 0$ and $\eta_{1} \neq 0$. Therefore $N_{i}=0$.

Let P_{i} be the projection on S_{i} along $S_{1} \oplus \cdots \oplus S_{i-1} \oplus S_{i+1} \oplus \cdots \oplus S_{k}$, $i=1, \ldots, k$. Then $A=a_{1} P_{1}+\cdots+a_{k} P_{k}$.
7. Theorem. Let [A] be the matrix of the linear transformation A on E_{n} with respect to basis \mathcal{B}. Then A is a linear involution of order n whose proper values are distinct n-th roots of unity if and only if all the principal k-rowed minors of $[A], k=1, \ldots, n-1$ are zero and $\operatorname{det} A=(-1)^{n-1}$. (By [2], p. 19, this means that the characteristic equation of A is $z^{n}-1=0$.)

The proof is straightforward and will be omitted.

REFERENCES

1. Ali R. Amir-Moéz: Extreme Properties of Linear Transformations. Polygonal Publishing House, Box 357, Washington, NJ07882, 1990.
2. C. C. MacDuffee: The Theory of Matrices. Verlag Julius Springer, Berlin, 1933.

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification: 15A04

