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ON PERFECT PAIR STRUCTURES

IN THE SET OF SPANNING TREES

OF A GRAPH

Branislav Nikolajevi�c, Dragan M. Acketa, Ladislav A. Novak

Structures in the set of all spanning trees of a graph, related to the concepts

of perfect pairs, hybrid bases and superperfect pairs are considered. Variety of

patterns and high regularity of these structures are underlined. An algorithm

for generating basic data set for these structures is presented.

0. INTRODUCTION

Novak, L. A. and Gibbons, A. have recently introduced new concepts of
perfect and superperfect pairs of spanning trees and hybrid bases in graphs ([1]{
[4]). These concepts induce interesting structures in the set of all spanning trees
of a graph, as it was pointed out in [1].

The main purpose of this paper is to underline surprising richness and high
regularity of perfect pair structures, which seems to be an inherent property. Suit-
able condensed representations are used to illustrate global aspects of these struc-
tures.

An algorithm for generating necessary data is also presented. The input
graphs are assumed to be non-oriented and 2-connected.

1. DEFINITIONS AND DENOTATIONS

We assume familiarity with the following basic notions of graph theory:
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circuit, cutset, spanning tree, fundamental circuit and fundamental cutset. All these
notions are treated as subsets of the edge set of a graph. Let A be a subset of
the edge-set E of a graph G. Then rank(A) denotes the non-negative integer
equal to the largest circuitless subset of A. The complement of A, denoted by
A�, is the set-di�erence EnA. Cardinality of the subset A is denoted by jAj. The
edge-sets will be denoted without brackets and commas.

Let t be a spanning tree of a graph G. Diameter of the spanning tree t

is equal to rank(t�).

A pair of spanning trees (t1; t2) is said to be a perfect pair ([1]) if none
of the fundamental circuits with respect to t1 and t2 , de�ned by an edge in
(t�1 \ t�2) , contains an edge in (t1 \ t2):

A pair of spanning trees (t1; t2) is said to be a superperfect pair ([2]) i�
any fundamental cutset that edges in (t1 \ t2) form with edges in either t�1 or
t�2 and any circuit that edges in (t�1 \ t�2) form with edges in either t1 or t2
� are disjoint.

A subset b of edges of a graph G is said to be a hybrid base [3] (a maximal
doubly independent set) of G if it is maximal circuitless and cutsetless subset of
edges in the sense that each superset of b contains circuit and/or cutset.

The concept of perfect pair of trees is a natural generalization of so-called
maximally distant pair of trees. The concept of superperfect pair of trees provides
a re�nement of a perfect pair of trees towards the concept of maximally distant
pair of trees. This notion is also closely related to the notion of maximal double
independence in graph.

The following two assertions give alternative de�nitions of perfect pairs and
superperfect pairs:

Assertion 1. [1] A pair of spanning trees (t1; t2) is a perfect pair i�
rank(t�1) = jt1nt2j = jt2nt1j = rank(t�2):

Assertion 2. [2] A pair of spanning trees is a superperfect pair (SP-pair)
i� the both set-di�erences t1nt2 and t2nt1 are hybrid bases.

A perfect pair (t1; t2) is called ordinary perfect (OP-pair), respectively
half-superperfect (HSP-pair), if none, respectively only one, of the set di�erences
t1 nt2 and t2 nt1 � is a hybrid base.

Note that any superperfect pair is a perfect pair and that any hybrid base is
a set-di�erence of spanning trees within a perfect pair. The converse statements
are not generally true.

||||||

Perfect pairs induce an incidence relation in the set of all spanning trees of the
input graph and hence form a tree graph. Hybrid bases induce an edge orientation
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of that graph.

Let P (G; d) denote a tree graph de�ned in the following way:

� the vertices are associated to the spanning trees of diameter d of the graph
G .

� two vertices of P (G; d) are joined by an edge i� their corresponding trees
constitute a perfect pair of G.

� the edge associated to a perfect pair (t1; t2) (where t1 and t2 are some two
spanning trees of G, both of diameter d), is oriented from t1 to t2 i�
t1 nt2 is a hybrid base of G. If both t1 nt2 and t2 nt1 are hybrid bases,
then this edge is doubly oriented.

||||||

As an introductory example for the notions introduced above, we consider
the graph G1 in Fig. 1.
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Figure 2. P (G1; 2)

The spanning trees 134, 135, 146, 156, 234, 235, 246 and 256 are cutsetless
and have diameter 3. Since they are at the same time maximal circuitless sets of
edges, they are all hybrid bases. The complementary pairs of spanning trees among
these eight � are superperfect.

The set 36 is a special hybrid base. Note that the addition of the edges 1 or
2 to the set 36 would give a cutset, while the addition of the edges 4 or 5 would
give a cycle.

The spanning trees 124, 125, 136, 236 and 126 have diameter 2. The set-
di�erences of 136 and 236 with any of 124 and 125 are equal to the special hybrid
base. There are no other perfect pairs and hybrid bases. The vertex 126 of the
graph P (G1; 2) is isolated (Fig. 2.).

||||||
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The graphs P (G; d), together with the additional data which could be derived
from them (vertex degrees, connected components, cycles, etc.) are considered
merely as a basic data set for generating perfect pair structures. Under "perfect
pair structures" we mean "nice" representations of these graphs, with as much
regularities pointed out as possible. We propose the precise de�nition of "beauty
of a structure" to be a topic for future work.

2. ALGORITHM

An algorithm for generating the basic data set of perfect pair structures of
a 2-connected graph G is presented. The set consists of graphs P (G; d) for all
possible diameters d , as well as of some additional data obtained by analyzing
these graphs.

The algorithm primarily �nds the perfect pairs of spanning trees and parti-
tions them into subclasses of OP-, HSP- and SP-pairs. This part of the algorithm
is based on Assertions 1. and 2. and two procedures, which are used for

� enumeration of all trees, combined with sorting them into classes with respect
to their diameters and for

� testing whether a set of edges of a graph is a hybrid base .

The space-optimal algorithms developed in [5] and [6] respectively may be
used for these purposes.

Let D(G) denote the set of all diameters of spanning trees, associated to
a 2-connected graph G . According to the property pointed out by Harary,
Mokken and Planholt [5], D(G) is dense in the sense that for any pair of
diameters k; j 2 D(G), such that k � j � 2, there exists a diameter s 2 D(G) ,
which is between k and j .

Suppose that a list of all the spanning trees of the input graph, sorted into
classes by diameter, is given. Let k denote the diameter of a particular class.
According to Assertion 1, a pair of trees (t1; t2) is a perfect pair of trees i� both
t1 and t2 belong to the same diameter class, say class k, and the distance between
t1 and t2 , i.e. jt1 nt2j � is equal to k. Since jt1j = jt2j; it is irrelevant which
one of the set-di�erences t1 nt2 and t2 nt1 is in question.

We sketch the outlook of the algorithm:

(* Generate Catalogue( G, d ) of all spanning trees of G,

which have diameter d, for each possible d; *)
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REPEAT

Output a new spanning tree t of G ; (* local algorithm ([6]) *)

Determine diameter d(t) as the difference of number of vertices

of G and number_of_connected_components_of (G-t);

Adjust max_diameter and/or min_diameter if necessary;

Put t in Catalogue( G, d(t) )

UNTIL all the spanning trees of G are exhausted ;

(* In this way are obtained all the vertices of all the

graphs P(G,d) *)

FOR d := min_diameter TO max_diameter DO BEGIN

(* Construct the edges (including their orientation)

of the graph P(G,d) by listing all the perfect pairs

of G and determining whether they are OP-, HSP- or

SP-pairs *)

FOR each pair {t1,t2} of trees in Catalogue( G, d ) DO

IF |t1 - t2| = diameter THEN BEGIN

Check whether t1-t2 is a hybrid base;

Check whether t2-t1 is a hybrid base; (* [7] *)

Output {t1,t2} as an OP-pair,

a HSP-pair (with known orientation), or a SP-pair

END;

(* Analyse the graph P(G,d) *)

Separate its connected components;

FOR each vertex determine the number of its incident

edges in the four classes: in-, out-, doubly

oriented and non-oriented;

Within each connected component

sort its vertices w.r.t. the quadruples of

numbers determined in the previous step;

Label the vertices of each connected component

by 1,2,... in accordance with the obtained order;

Using the labelled neighbours of each vertex, determine

the isomorphisms between the connected components,

in the cases when they exist;

Generate the picture of a connected component in each

isopmorphic class;

END; (* FOR d *)

Instead of �nding an arbitrary picture, we would prefer in the last step to
�nd a "nice" representation, as symmetric as possible. An extension of algorithm
in that direction would lead to an automated generation of the structure itself.
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3. AN ILLUSTRATIVE EXAMPLE

The perfect pair structure corresponding to the graph G2 (Figure 3.) is
described in this section. The basic data set for determining the structure was
generated by applying the above algorithm (implemented in PASCAL). The run-
ning time was less than a minute on a PC-486.
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Figure 3. The graph G2

The graph G2 has spanning trees of four di�erent diameters, 4 through 7.

The graph P (G2; 4) is a regular graph of degree 0, since the graph G2

has not perfect pairs of diameter 4. The only �ve isolated vertices of P (G2; 4)
are 1 2 7 8 9 10 12, 1 2 7 8 9 10 13, 1 2 7 8 9 10 14, 1 2 7 8 9 11 14

and 1 2 7 8 10 11 14.

The graph P (G2; 7) is a regular graph of degree 1 on 128 vertices. Each one
of the 64 edges of this graph corresponds to a superperfect pair of complementary
spanning trees of diameter 7.

The graphs P (G2; 5) and P (G2; 6) are considered in more detail. The
graph P (G2; 5) includes both OP- and HSP-pairs, while the graph P (G2; 6)
includes both HSP- and SP-pairs. The main data for these two graphs are given
in the following table:

NT IT OP HSP SP

P (G2; 5) 128 40 160 168 �
P (G2; 6) 272 40 � 320 32

The columns of the table respectively contain the number NT of spanning
trees, the number IT of "isolated" trees (apart from perfect pairs), the number of
OP-pairs, the number of HSP-pairs and the number of SP-pairs.
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4.1. Diameter 6

Apart from 40 isolated vertices, the graph P (G2; 6) has sixteen connected
components. Eight of them (with 12 vertices each) are all isomorphic to the �rst
one, while the other eight components (with 17 vertices each) are all isomophic
to the second one ("snow-ake") of the components shown in Fig. 4. The "snow-
akes" include both HSP- and SP-pairs.
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Figure 4. Typical non-trivial components of P (G2; 6)
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The vertices in Fig. 4 correspond to the trees given in the following list:

a = 2 3 6 8 9 11 12 e = 1 3 6 7 9 11 12 i = 1 2 4 7 10 13 14

b = 1 2 5 7 10 13 14 f = 1 2 5 8 10 13 14 j = 2 4 7 8 10 13 14

c = 1 3 6 8 9 11 12 g = 2 3 6 7 9 11 12 k = 1 2 4 8 10 13 14

d = 2 5 7 8 10 13 14 h = 1 5 7 8 10 13 14 l = 1 4 7 8 10 13 14

A = 1 3 4 7 9 10 13 G = 1 3 4 8 9 10 13 M = 1 3 4 8 9 10 14

B = 2 5 6 8 10 11 14 H = 2 5 6 7 8 12 14 N = 1 3 4 7 8 10 12

C = 1 3 4 7 9 10 12 I = 2 5 6 8 9 11 14 O = 1 3 4 7 9 10 14

D = 2 5 6 7 8 13 14 J = 2 5 6 7 8 11 13 P = 1 3 4 7 8 10 13

E = 1 3 4 8 9 10 12 K = 2 5 6 7 9 11 14 Q = 2 5 6 7 8 11 14

F = 2 5 6 7 10 11 14 L = 2 5 6 7 8 11 12

The remaining seven 12-vertex components are obtained from the given one
by mapping the ordered triple of edges (10,13,14) to (9,11,12), (9,13,14), (10,11,12),
(10,11,13), (9,12,14), (9,11,13) and (10,12,14) respectively.

The remaining seven 17-vertex components are obtained from the given one
by mapping the ordered triple of edges (2,5,6) to (2,3,5), (2,4,6), (2,3,4), (1,3,4),
(1,4,6), (1,3,5) and (1,5,6) respectively.
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It is interesting to note that the last eight triples are coincident with the span-
ning trees of diameter 3 of the graph G1, while the above eight triples correspond
to the spanning trees of diameter 3 of a subgraph, which is a copy of G1.

It might be also interesting to compare these observations with the analogous
observations for the graph G3 , which is obtained from the graph G2 by moving
the edge 11 to the position of "the other diagonal of the right square". The graph
G3 possesses a vertical axis of symmetry.

The graph P (G3; 6) has sixteen non-trivial components with 12 vertices
each, which are all isomorphic to the smaller non-trivial component of G2. The
�rst eight of these components can be obtained from the corresponding 12-vertex
components og G2 simply by replacing the edges 10 and 11, while the other eight
components can be obtained from the �rst eight by applying the above observed
symmetry.

4.2. Diameter 5

The graph P (G2; 5) is by far the most complex.

This graph has 40 isolated vertices and two large connected components, with
46 and 42 vertices respectively, both of which have both oriented and non-oriented
edges. These two components are denoted by I and II and their global scheme is

given in Figure 5. The single vertices are denoted by (the same denotation is
applied in �gures 6. � 9.)
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N I = the purely non-oriented part of Component I (similarly N II)

O I = the purely oriented part of Component I (similarly O II)
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Figure 5.

A global scheme of main

component of P (G2;5)
14 vertices

20 vertices

The number (v; e) of vertices and edges in the two components, partitioned
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w.r.t. to the orientation of the edges � is given in the following table:

oriented part non-oriented part

Component I (30, 104) (32, 72)
Component II (22, 64) (28, 88)

For example, the number 104 in the table denotes the number of oriented
edges in Component I. Note that 16 vertices of Component I, as well as 8 vertices
of Component II, which are incident both tho oriented and non-oriented edges �
are counted twice ( 46 = 30+ 32� 16 and 42 = 22 + 28� 8).

These four parts are described by �ve �gures (Fig. 6. - 10.). We explain in
more detail the interconnections between them.

For the sake of clearness, the edges of oriented part of Component I are shown
by two �gures (6. and 7.); each one of the vertices A,B,...,F in Fig. 6. denotes the
same spanning tree as the corresponding vertex in Fig. 7.

The denotation o,i,u
n

stands for a collection of n vertices, all of which
have out-degree o , in-degree i and unoriented degree u. This denotation is
used as a generalization of vertex. All the vertices within a box have the same
relationship with the neighbouring vertices. Thus each (oriented or non-oriented)
edge attached to an n�vertex box replaces n such edges attached to the vertices
(spanning trees) within that box.

The following 24 spanning trees of diameter 5 of G2 are incident both to
oriented and non-oriented edges: (sixteen of them within Component I and the
last eight within Component II).

a1 = 1 4 7 8 9 10 12 a5 = 2 4 7 8 9 10 12

a2 = 1 4 7 8 9 10 13 a6 = 2 4 7 8 9 10 13

a3 = 1 5 7 8 9 10 12 a7 = 2 5 7 8 9 10 12

a4 = 1 5 7 8 9 10 13 a8 = 2 5 7 8 9 10 13

b1 = 1 2 4 7 9 10 12 b5 = 1 2 4 8 9 10 12

b2 = 1 2 4 7 9 10 13 b6 = 1 2 4 8 9 10 13

b3 = 1 2 5 7 9 10 12 b7 = 1 2 5 8 9 10 12

b4 = 1 2 5 7 9 10 13 b8 = 1 2 5 8 9 10 13

c1 = 1 3 6 7 9 10 12 c5 = 1 3 6 7 9 10 13

c2 = 1 3 6 8 9 10 12 c6 = 1 3 6 8 9 10 13

c3 = 2 3 6 7 9 10 12 c7 = 2 3 6 7 9 10 13

c4 = 2 3 6 8 9 10 12 c8 = 2 3 6 8 9 10 13

The following eight 4-sets and eight 2-sets of spanning trees intersect as shown
in Fig. 5. The boxes denoted to these sets are also shown in Figs. 6.-10.
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L = a1 a2 a3 a4 O = a1 a3 P = a2 a4

K = a5 a6 a7 a8 Q = a6 a8 R = a5 a7

M = b1 b2 b3 b4 N = b5 b6 b7 b8

T = b1 b3 b5 b7 S = b2 b4 b6 b8

U = c1 c2 c3 c4 V = c5 c6 c7 c8

Y = c1 c5 Z = c2 c6 X = c3 c7 W = c4 c8
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of P (G2; 5) (�rst "level")
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of Component II of P (G2;5)

4.3. Observations on symmetry

All the considered connected components of the perfect pair graphs are cen-
trally symmetric. Let [x; y] denote the transposition of elements x and y .

The permutation [1; 2] � [4; 5] induces a central symmetry of P (G1; 2) ,
although [4; 5] is the only non-trivial edge-automorphism of G1.

The components of P (G2; 6) shown in Figure 4. have the central symmetry
[7; 8] � [12; 13].

The four parts of P (G2; 5) on the Figures 6.�7., 8., 9. 10. have the central
symmetries [1; 2]�[7;8] , [1; 2]�[12;13] , [4; 5]�[12; 13] and [1; 2]�[7; 8] respectively.
In addition, the transpositions [12; 14] and [13; 14] map the quadruples S and
T in Figure 8. to the central quadruple, while the transposition [9; 10] maps the
outer boxes of four "deltoids" in Figure 10. to their inner "deltoids".

On the other hand, note that the only non-trivial edge-automorphisms of
G2 are [4; 5] and [12; 13] (and their product).

||||||

On the basis of these examples, we conjecture that the perfect pair graphs are
generally more symmetric than the input graphs. More precisely, the perfect pair
graphs have greater orbits of the automorphism groups. We think that it would
be worth studying which new automorphic mappings (like transpositions [1; 2] or
[7; 8] with G2 ) arise when the collection of perfect pairs is considered instead of
the underlying graph.
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4. CONCLUSION

Structures in the set of trees of a graph induced by perfect pairs are considered
and illustrated. The observed regularity motivates further investigations in the
�eld. Development of algorithms for direct extraction of the global structure of tree
graphs, combined with studying the relationships between the input graphs and
their associated tree graphs � could be an important step towards examination
of qualitative properties of the considered structures.
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