AN ASYMPTOTIC FORMULA INVOLVING THE ENUMERATING FUNCTION OF FINITE ABELIAN GROUPS

Aleksandar Ivić*
Dedicated to Professor Paul Erdös on the occasion of his 80th birthday

Let $a(n)$ denote the number of non-isomorphic Abelian groups with n elements. It is shown that there is a constant $C>0$ such that

$$
\sum_{n \leq x} a(n+a(n))=C x+O\left(x^{11 / 12+\varepsilon}\right)
$$

Let $a(n)$, as usual, denote the number of non-isomorphic Abelian (commutative) groups with n elements. It is well-known that this is a multiplicative function $(a(m n)=a(m) a(n)$ if $(m, n)=1)$ such that $a\left(p^{\alpha}\right)=P(\alpha)$ for any prime p (henceforth p will always denote primes), where $P(\alpha)$ is the number of (unrestricted) partitions of α. Thus, for $\operatorname{Re} s>1$,

$$
\sum_{n=1}^{\infty} a(n) n^{-s}=\zeta(s) \zeta(2 s) \zeta(3 s) \ldots
$$

where $\zeta(s)$ is the Riemann zeta-function. The first paper in which the function $a(n)$ was studied was written by P. Erdös and G. Szekeres [5]. Later the distribution of values of $a(n)$ was extensively studied by many authors (see, for example, the papers [2]-[11]). The function $a(n)$ has the property that $a(n)=$ $a(s(n))$, where $s(n)$ is the squarefull part of n. Functions with this property were named s-functions in [8], where their local densities were discussed. Problems involving $a(n)$ at consecutive integers were investigated in [3], and those involving the iterates of $a(n)$ in [4]. The local densities of $a(n)$ were studied in [6], [7] and [11].

[^0]The aim of this note is to furnish an asymptotic formula for the summatory function of $a(n+a(n))$. This is motivated by the work of C. Spiro [12], who proved

$$
\sum_{n \leq x, d(n+d(n))=d(n)} 1 \gg \frac{x}{(\log x)^{7}}
$$

where as usual $d(n)$ is the number of divisors of n. It seems reasonable to conjecture that, for some $D>0$,

$$
\begin{equation*}
\sum_{n \leq x} d(n+d(n))=D x \log x+O(x) \tag{1}
\end{equation*}
$$

although to the best of my knowledge no one has proved or disproved (1) so far. The corresponding problem when $d(n)$ is replaced by $a(n)$ (or a suitable prime--independent multiplicative function $f(n)$ such that $f(p)=1$) is much less difficult. This is roughly due to the fact that $d(p)=2$ and $a(p)=1$. We shall prove the following

Theorem. There is an effectively computable constant $C>0$ such that for any given $\varepsilon>0$

$$
\begin{equation*}
\sum_{n \leq x} a(n+a(n))=C x+O\left(x^{11 / 12+\varepsilon}\right) \tag{2}
\end{equation*}
$$

Before we give the proof of (2) it should be remarked that very likely the exponent $11 / 12$ in the error term in (2) is far from the best possible one. In fact, I conjecture that the error term in question is $O\left(x^{1 / 2+\varepsilon}\right)$ for any given $\varepsilon>0$ and $\Omega\left(x^{1 / 2-\delta}\right)$ for any given $\delta>0$. It would be interesting to compare C in (2) with the constant

$$
C_{0}=\lim _{x \rightarrow \infty} x^{-1} \sum_{n \leq x} a(n)=\zeta(2) \zeta(3) \zeta(4) \ldots=2.29485 \ldots
$$

which represents the mean value of $a(n)$. Numerical computation of C is not easy, and I cannot rule out the possibility that $C=C_{0}$.

Henceforth let q denote squarefree numbers $\left(\mu^{2}(q)=1\right)$ and s squarefull numbers ($p \mid s$ implies $p^{2} \mid s$), respectively. We start from

$$
\sum_{n \leq x} a(n+a(n))=\sum_{k \leq x^{\varepsilon}} \sum_{n \leq x, a(n)=k} a(n+k)=\sum_{k \leq x^{\varepsilon}} S(x, k),
$$

where we used the bound (see [9]) $\log a(n) \ll \log n / \log \log n$, which implies $a(n) \leq$ $n^{\varepsilon}\left(n \geq n_{0}\right)$, and where we set

$$
\begin{aligned}
S(x, k) & :=\sum_{n \leq x, a(n)=k} a(n+k)=\sum_{s \leq x, a(s)=k} \sum_{q \leq x / s,(q, s)=1} a(q s+k) \\
& =\sum_{s \leq x^{\alpha}, a(s)=k} \sum_{q \leq x / s,(q, s)=1} a(q s+k)+O\left(x^{1-\alpha / 2+\varepsilon}\right)
\end{aligned}
$$

uniformly in k, where α is a constant such that $0<\alpha<1 / 3$ which will be determined later. Here we used the already mentioned property that $a(n)=a(s)$ if $n=q s,(q, s)=1$, which follows from $a(p)=1$ and multiplicativity. Now we shall use (see [7] and [8]) the uniform estimate

$$
\sum_{q \leq x,(q, r)=1} 1=6 \pi^{-2} x \prod_{p \mid r}\left(1+p^{-1}\right)^{-1}+O\left(x^{1 / 2} r^{\varepsilon}\right)
$$

to obtain, uniformly for $1 \leq s \leq x^{\alpha}<x^{1 / 3}, 1 \leq k \leq x^{\varepsilon}$,

$$
\begin{aligned}
& \sum_{q \leq x / s,(q, s)=1} a(q s+k)=\sum_{d^{2} l \leq x / s,(d, s)=1,(l, s)=1} \mu(d) a\left(d^{2} l s+k\right) \\
= & \sum_{d \leq x^{\alpha / 2},(d, s)=1} \mu(d) \sum_{l \leq x /\left(d^{2} s\right),(l, s)=1} a\left(d^{2} l s+k\right)+O\left(\frac{x}{s} \sum_{d>x^{\alpha / 2}} x^{\varepsilon} d^{-2}\right) \\
= & \sum_{d \leq x^{\alpha / 2},(d, s)=1} \mu(d) \sum_{\delta \mid s} \mu(\delta) \sum_{m \leq x /\left(d^{2} \delta s\right)} a\left(d^{2} \delta s m+k\right)+O\left(x^{1+\varepsilon-\alpha / 2} s^{-1}\right) \\
= & \sum_{d \leq x^{\alpha / 2},(d, s)=1} \mu(d) \sum_{\delta \mid s} \mu(\delta) \sum_{n \leq x, n \equiv k(\bmod r)} a(n)+O\left(x^{\alpha / 2+\varepsilon}\right)+O\left(x^{1+\varepsilon-\alpha / 2} s^{-1}\right) .
\end{aligned}
$$

Here we set $r=d^{2} \delta s$ and we used the elementary relations

$$
\mu^{2}(n)=\sum_{d^{2} \mid n} \mu(d), \sum_{d \mid n} \mu(d)= \begin{cases}1 & n=1 \\ 0 & n>1\end{cases}
$$

Moreover the first O-term above may be absorbed by the second one if $0<\alpha<1 / 3$. Thus we are left with the evaluation of

$$
T(x, k, r):=\sum_{n \leq x, n \equiv k(\bmod r)} a(n) \quad\left(1 \leq k \leq x^{\varepsilon}, 1 \leq r \leq x\right),
$$

and we seek an asymptotic formula for $T(x, k, r)$ with the error term uniform in k and r. There are results in the literature on $T(x, k, r)$ due to H.-E. Richert [11] and J. Duttlinger [2]. For $(k, r)=1$ one can get by an elementary argument, uniformly for $1 \leq r \leq x$,

$$
\begin{equation*}
T(x, k, r)=B(r) x+O\left((r x)^{1 / 2+\varepsilon}\right), \quad B(r)=O(1 / r) \tag{3}
\end{equation*}
$$

where $B(r)$ is given explicitly by (5) and (6). For $1 \leq k \leq x^{\varepsilon}, 1 \leq r \leq x,(k, r)>1$ formula (5.2) of Duttlinger's paper implies that uniformly

$$
\begin{equation*}
T(x, k, r)=B(k, r) x+O\left((r x)^{1 / 2+\varepsilon}\right), \quad B(k, r)=O\left(r^{\varepsilon-1}\right) \tag{4}
\end{equation*}
$$

since in that case $d=d_{1} d_{2} \ll x^{\varepsilon}$ and (4) follows by the condition $\alpha(m) \mid d_{1}, \alpha(m)=$ $\prod_{m} p$, so that one can majorize over squarefull numbers. Thus combining (3) and (4) we have a formula for $T(x, k, r)$ valid in all cases, where we set $B(r)=B(k, r)$ if $(k, r)=1$ for notational convenience. If r is bounded by a (relatively) small
power of x, then both Richert and Duttlinger obtain much sharper results for $T(x, k, r)$, which involve the existence of two more main terms besides $B(k, r) x$. An obvious way to improve on the exponent $11 / 12$ in (2) is to sharpen (3) and (4). We postpone the proof of (3) and carry on with the evaluation of $S(x, k)$. We obtain

$$
\begin{aligned}
& S(x, k)=O\left(x^{1+\varepsilon-\alpha / 2}\right) \\
& \quad+\sum_{s \leq x^{\alpha}, a(s)=k} \sum_{d \leq x^{\alpha / 2},(d, s)=1} \mu(d) \sum_{\delta \mid s} \mu(\delta)\left\{x B\left(k, d^{2} \delta s\right)+O\left(x^{1 / 2+\varepsilon} d(\delta s)^{1 / 2}\right)\right\} \\
& =x\left\{\sum_{s=1, a(s)=k} \sum_{d=1,(d, s)=1} \mu(d) \sum_{\delta \mid s} \mu(\delta) B\left(k, d^{2} \delta s\right)\right\} \\
& \quad+O\left(x^{1+\varepsilon-\alpha / 2}\right)+O\left(x^{1 / 2+\varepsilon} \sum_{s \leq x^{\alpha}} s \sum_{d \leq x^{\alpha / 2}} d\right) \\
& =x A(k)+O\left(x^{1+\varepsilon-\alpha / 2}\right)+O\left(x^{(1+5 \alpha) / 2+\varepsilon}\right)=x A(k)+O\left(x^{11 / 12+\varepsilon}\right)
\end{aligned}
$$

for $\alpha=1 / 6$ with

$$
A(k):=\sum_{s=1, a(s)=k} \sum_{d=1,(d, s)=1} \mu(d) \sum_{\delta \mid s} \mu(\delta) B\left(k, d^{2} \delta s\right) .
$$

By using $B(k, r) \ll r^{\varepsilon-1}$ in the relevant range it follows that

$$
\begin{aligned}
& \sum_{n \leq x} a(n+a(n))=\sum_{k \leq x^{\varepsilon}} S(x, k)=x \sum_{k \leq x^{\varepsilon}} A(k)+O\left(x^{11 / 12+\varepsilon}\right) \\
& \quad=x \sum_{k=1}^{\infty} A(k)+O\left(x \sum_{k>x^{\varepsilon}} \sum_{s=1, a(s)=k} s^{\varepsilon-1}\right)+O\left(x^{11 / 12+\varepsilon}\right) \\
& \quad=x \sum_{k=1}^{\infty} A(k)+O\left(x^{11 / 12+\varepsilon}\right)
\end{aligned}
$$

since $a(s)=k$ implies $s \gg \exp \left(C_{1} \log k / \log \log k\right)$ for some $C_{1}>0$, and $\sum_{s \leq x} 1 \ll$
$x^{1 / 2}$. This proves (2) with

$$
C=\sum_{k=1}^{\infty} A(k)>0
$$

Finally it remains to sketch the proof of (3) for $(k, r)=1$. Let $\chi(n)$ be a Dirichlet character modulo r. If χ_{0} is the principal character $\bmod r$, then

$$
\begin{aligned}
& \sum_{n \leq x} \chi_{0}(n) a(n)=\sum_{n \leq x,(n, r)=1} a(n)=\sum_{s \leq x,(s, r)=1} a(s) \sum_{q \leq x / s,(q, s)=1,(q, r)=1} 1 \\
& =\sum_{s \leq x,(s, r)=1} a(s)\left\{\frac{6 x}{\pi^{2} s} \prod_{p \mid s r} \frac{1}{1+p^{-1}}+O\left(\left(\frac{x}{s}\right)^{1 / 2} x^{\varepsilon}\right)\right\} \\
& =\frac{6 x}{\pi^{2}} \prod_{p \mid r} \frac{1}{1+p^{-1}} \prod_{p \nmid r}\left(1+\frac{a\left(p^{2}\right) p^{-2}+a\left(p^{3}\right) p^{-3}+\cdots}{1+p^{-1}}\right)+O\left(x^{1 / 2+\varepsilon}\right)
\end{aligned}
$$

$$
=6 \pi^{-2} C(r) x+O\left(x^{1 / 2+\varepsilon}\right)
$$

uniformly for $1 \leq r \leq x$, where we have set

$$
\begin{equation*}
C(r):=\prod_{p \mid r} \frac{1}{1+p^{-1}} \prod_{p \nmid r}\left(1+\frac{P(2) p^{-2}+P(3) p^{-3}+\cdots}{1+p^{-1}}\right)=O(1) \tag{5}
\end{equation*}
$$

If $\chi(n)$ is a non-principal character $\bmod r$, then

$$
\begin{aligned}
& \sum_{n \leq x} a(n) \chi(n)=\sum_{s \leq x} \chi(s) a(s) \sum_{q \leq x / s,(q, s)=1} \chi(q) \\
& =\sum_{s \leq x} \chi(s) a(s) \sum_{d^{2} l \leq x / s,(d, s)=1,(l, s)=1} \mu(d) \chi\left(d^{2} l\right) \\
& =\sum_{s \leq x} \chi(s) a(s) \sum_{d \leq(x / s)^{1 / 2},(d, s)=1} \mu(d) \chi^{2}(d) \sum_{l \leq x /\left(d^{2} s\right),(l, s)=1} \chi(l) \\
& =\sum_{s \leq x} \chi(s) a(s) \sum_{d \leq(x / s)^{1 / 2},(d, s)=1} \mu(d) \chi^{2}(d) \sum_{\delta \mid s} \mu(\delta) \chi(\delta) \sum_{m \leq x /\left(d^{2} \delta s\right)} \chi(m) .
\end{aligned}
$$

To estimate the innermost sum above we use the classical Pólya-Vinogradov inequality (see H. Davenport [1, Ch. 23]):

$$
\sum_{M<n \leq M+N} \chi(n)=O\left(r^{1 / 2} \log r\right) \quad\left(\chi \neq \chi_{0} ; M, N \geq 1\right)
$$

This gives

$$
\sum_{n \leq x} a(n) \chi(n) \ll x^{1 / 2} \sum_{s \leq x} a(s) d(s) s^{-1 / 2} r^{1 / 2} \log r \ll(x r)^{1 / 2+\varepsilon}
$$

Using then the orthogonality relations for characters (φ is Euler's function), namely

$$
\frac{1}{\varphi(r)} \sum_{\chi(\bmod r)} \chi(n) \bar{\chi}(k)=\left\{\begin{array}{cc}
1 & n \equiv k(\bmod r) \\
0 & n \not \equiv k(\bmod r)
\end{array} \quad((k, r)=1)\right.
$$

we obtain

$$
\begin{aligned}
& T(x, k, r)=\frac{1}{\varphi(r)} \sum_{\chi(\bmod r)} \bar{\chi}(k)\left(\sum_{n \leq x} \chi(n) a(n)\right) \\
& =\frac{6 C(r) x}{\pi^{2} \varphi(r)}+O\left(x^{1 / 2+\varepsilon}\right)+\frac{1}{\varphi(r)} \sum_{\chi(\bmod r), \chi \neq \chi_{0}} \bar{\chi}(k)\left(\sum_{n \leq x} \chi(n) a(n)\right) \\
& =B(r) x+O\left((x r)^{1 / 2+\varepsilon}\right)
\end{aligned}
$$

uniformly in r, where

$$
\begin{align*}
& B(r):=\frac{6 C(r)}{\pi^{2} \varphi(r)}= \tag{6}\\
& =\frac{6}{\pi^{2} r} \prod_{p \mid r}\left(1-\frac{1}{p}\right)^{-1}\left(1+\frac{1}{p}\right)^{-1} \prod_{p \nmid r}\left(1+\frac{P(2) p^{-2}+P(3) p^{-3}+\cdots}{1+p^{-1}}\right) \\
& =O\left(\frac{1}{r} \prod_{p \mid r} \frac{1}{1-p^{-2}}\right)=O\left(\frac{1}{r}\right)
\end{align*}
$$

This proves (3), and completes the proof of the Theorem.

REFERENCES

1. Heidelberg-New York, 1980.
2. Angew. Math. 273 (1975), 61-76.
3. at cons Amsterdam 1989, 45-91.
4.

On the iterates of the enumerating function of finite Abelian groups. Bull. Acad. Sci. Serbe Math., 9917 (1989), 13-22.
5.
: Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Sci. Math. (Szeged) 7 (1935), 95-102.
6. : The distribution of values of the enumerating function of non-isomorphic Abelian groups of finite order, Arch. Math. 30 (1978), 374-379.
7. : On the number of Abelian groups of a given order and on certain related multiplicative functions. J. Number Theory 16 (1983), 119-137.
8.
: Local densities over integers free of large prime factors. Quart. J. Math. (Oxford) (2) 37 (1986), 401-417.
9. : Die maximale ordnung der Anzahl der wesentlich verschiedenen Abelschen Gruppen n-ter Ordnung. Quart. J. Math. (Oxford) (2) 21 (1970), 273-275.
10. : The distribution of a(n), Arch. Math. 57 (1991), 47-52.
11.
: Öber die Anzahl Abelscher Gruppen gegebener Ordnung II. Math. Zeit. 58 (1953), 71-84.
12.
: An iteration problem involving the divisor function. Acta Arith. 46 (1986),
215-225.
Department of Mathematics,
Faculty of Mining and Geology,
University of Belgrade,
Đušina 7, 11000 Belgrade,
Yugoslavia

[^0]: *Research financed by the Mathematical Institute of Belgrade.
 1991 AMS Subject Classification: Primary 11 N 37, Secondary 20 K 01

