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ON A LINEAR
FUNCTIONAL-DIFFERENTIAL EQUATION

Jovan D. Ke�cki�c

The functional-di�erential equation (1) is treated by an ad hoc method to

obtain solutions involving one or more arbitrary functions, and also solutions

which satisfy some additional conditions.

There are many results concerning the linear functional-di�erential equation
for the unknown functions u : S ! R

u0(f(x)) + au(f(x)) + bu0(x) + cu(x) = 0;

where S is a nonempty set, f : S ! S and a; b; c 2 Rare given, particularly if there
exists a positive integer n such that fn(x) = x. In this note we shall consider an
equation of the same type, but the unknown function will be in two variables.

Let S be a nonempty set and let f : S ! S be a given mapping. Consider
the equation in u:

(1) uy(f(x); y) + au(f(x); y) + buy(x; y) + cu(x; y) = 0;

where a; b; c 2 R are given and u : S � R ! R is the unknown function with

uy(x; y) =
@u(x; y)

@y
.

This equation can be written in the form

(2) (L1L2 + aL1 + bL2 + cI)u = 0;

where the linear operators L1, L2, I are de�ned by

L1u(x; y) = u(f(x); y); L2u(x; y) = uy(x; y); Iu(x; y) = u(x; y)

We shall apply to (2) a variant of the method suggested in [1] which is based
upon the existence of characteristic vectors for both operators L1, L2, i.e. upon the
existence of functions u with the properties

L1u = �u; L2u = �u;
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i.e.

(3) u(f(x); y) = �u(x; y); uy(x; y) = �u(x; y):

From the second equation in (3) follows u(x; y) = '(x)e�y , where ' is an
arbitrary function. Substituting this into the �rst equation of (3) we arrive at the
functional equation

(4) '(f(x)) = �'(x):

Equation (4) is the so-called Schr�oder equation (or the Schr�oder-Koenigs

equation). This equation was thoroughly investigated in many papers; see, for
example, Chapter 6 of [2].

In further text v� will denote an arbitrary solution of (4): it may be trivial.
Therefore, the function u de�ned by

(5) u(x; y) = v�(x)e
�y

satis�es the conditions (3) and substituting (5) into (2) we obtain the characteristic
equation

(6) ��+ a�+ b�+ c = 0

which implies

� = �
a�+ c

� + b

and (5) becomes

u(x; y) = v�(x)e
�

a�+c

�+b
y
:

Since the equation (2) is linear, we conclude that it has the following formal
solution

(7) u(x; y) =
X
�

v�(x)e
�

a�+c

�+b
y
;

where the sum is taken over all � 2 � � R on supposition that it exists. Also, from
(6) follows

� = �
b�+ c

�+ a

and (2) has the following formal solution

(8) u(x; y) =
X
�

v
�

b�+c

�+a

(x)e�y;

where the sum has a similar meaning as the sum in (7). Combining (7) and (8) we
obtain the following solution of (2):

(9) u(x; y) =
X
�

v�(x)e
�

a�+c
�+b

y
+
X
�

v
�

b�+c

�+a

(x)e�y :



On a linear functional-di�erential equation 43

The obtained solution (9) may seem to be rather formal and therefore useless.
However, this is not so, since in certain cases explicit solutions can be derived
from (9).

First of all, if c = ab, then (9) becomes

(10) u(x; y) = e�ay
X
�

v�(x) + v
�b(x)

X
�

e�y :

Then putting X
�

v�(x) = F (x);
X
�

e�y = G(y);

we get

(11) u(x; y) = e�ayF (x) + v
�b(x)G(y):

This suggests that (11), where F is an arbitrary and G an arbitrary di�erentiable
function, might be a solution of (2). A direct veri�cation show that this is indeed
true.

Furthermore, for certain choices of f we can get an explicit expression for
v�(x). For instance, if

(i) f(x) = x+ d, where d 6= 0, then

v�(x) = P (x)�x=d;

where P is an arbitrary periodic function with period d; if

(ii) f(x) = dx, where d > 0, then

v�(x) = P (logd x)�
logd x;

where P is an arbitrary periodic function with period 1.

On the other hand, if there exists a positive integer n such that fn(x) = x,
nontrivial solutions of (4) exist if and only if �n = 1. So, for example, if

(iii) f(x) = 1� x (the case n = 2), then

v1(x) = F (x) + F (1� x); v
�1(x) = F (x)� F (1� x);

where F is an arbitrary function and v�(x) = 0 for �2 6= 1; if

(iv) f(x) =
x� 1

x
(the case n = 3), then

v1(x) = F (x) + F
�x� 1

x

�
+ F

� 1

1� x

�
;

where F is an arbitrary function and v�(x) = 0 for � 6= 1.

The following examples will provide further illustrations how the formal so-
lution (9) can be used in solving concrete problems.
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Example 1. If A;B : R! R are given functions such that A(0) = B(0) = �,
consider the Goursat type problem

uy(x+ 1; y) + 2u(x+ 1; y)� 3uy(x; y) � 6u(x; y) = 0;(12)

u(x; 0) = A(x); u(0; y) = B(y):(13)

In this case c = ab, and using (11) we obtain the following solution of (12):

u(x; y) = e2yF (x) + v3(x)G(y);

where F is an arbitrary and G an arbitrary di�erentiable function. Furthermore,
the equation (4) becomes '(x+ 1) = 3'(x) and so

v3(x) = 3xP (x) (P arbitrary 1-periodic function).

Hence,

(14) u(x; y) = e2yF (x) + 3xP (x)G(y):

Substituting the conditions (13) into (14) we easily obtain the following solution of
the problem (12){(13):

u(x; y) = e2yA(x) +
1

P (0)

�
3xP (x)B(y) � �3xe2yP (x)

�
:

Example 2. For the equation

(15) uy(3� x; y)� 2u(3� x; y) + 2uy(x; y) � 4u(x; y) = 0

the corresponding equation (4)

'(3� x) = �2'(x)

has no nontrivial solutions, and according to (11) we obtain the following solution
of (15):

u(x; y) = e2yF (x) (F arbitrary).

On the other hand, for the equation

(16) uy(1 � x; y)� 2u(1� x; y)� uy(x; y) + 2u(x; y) = 0

the equation (4) becomes
'(1� x) = '(x)

and so
v1(x) = H(1� x) +H(x);

where H is an arbitrary function. Hence, we obtain the following solution of (16):

u(x; y) =
�
H(1� x) +H(x)

�
F (y) + e2yG(x);

where F is an arbitrary di�erentiable function and G, H are arbitrary functions.
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Remark. Putting H(x)F (y) = T (x; y), it is tempting to try whether

u(x; y) = T (1� x; y) + T (x; y) + e2yG(x)

where T is an arbitrary function, di�erentiable in y, is also a solution of (16). A
direct veri�cation shows that this is true.

Example 3. Consider the problem consisting of the equation

(17) uy(x+ 1; y) + u(x+ 1; y)� 3uy(x; y) + 4u(x; y) = 0;

and the condition

(18) u(0; y) = sh 2y:

Since v�(x) = �xP�(x), where P� is an arbitrary 1-periodic function, we
obtain the following solution of (17):

(19) u(x; y) =
X
�

�xP�(x)e
�

�+4

��3
y
;

since the second sum in (9) will contribute nothing new. From the equations

�
� + 4

� � 3
= �2 we get � =

2

3
and � = 10, respectively. Hence, we take

P2=3(x) =
1

2
; P10(x) = �

1

2
; P�(x) = 0 for other values of �.

Therefore, (19) becomes

u(x; y) =
1

2

�2
3

�x
e2y �

1

2
(10)xe�2y;

and this is a solution of (17){(18).

Example 4. A formal solution of the equation

(20) uy

� x

2x� 1
; y
�
+ 2u

� x

2x� 1
; y
�
� 2uy(x; y) + 3u(x; y) = 0

is given by

u(x; y) =
X
�

v�(x)e
2�+3

2��
y
:

However, the corresponding equation (4)

'
� x

2x� 1

�
= �'(x)

has nontrivial solutions only for � = 1 and � = �1. They are

v1(x) = F (x) + F

� x

2x� 1

�
; v

�1(x) = G(x)�G

� x

2x� 1

�
;
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where F , G are arbitrary functions. Therefore, we obtain the following solution of
(20):

u(x; y) =

�
F (x) + F

� x

2x� 1

��
e5y +

�
G(x)� G

� x

2x� 1

��
ey=3:
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