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A CONTRIBUTION TO THE STUDY

OF REAL GRAPH POLYNOMIALS

Ivan Gutman

Let G be a graph and C its circuit. Let � stand for the matching polynomial.

Let t be a real number, such that jtj � 1. We demonstrate that for certain

classes of compound graphs the polynomial �t(G;C;x) = �(G;x)� 2t�(G� C; x)

is real, i.e. that all its zeros are real.

1. INTRODUCTION

Let G be a graph containing n vertices and m edges. For k > 1 let m(G; k)

denote the number of ways in which k independent edges can be selected in G. In

addition to this, let m(G; 0) = 1 and m(G; 1) = m. Then the matching polynomial

of G is de�ned as

�(G) = �(G; x) =
X

k�0

(�1)km(G; k)xn�2k:

The theory of the matching polynomials is nowadays well elaborated [2]. In

particular, it is known that �(G) is a real graph polynomial [4], i.e. that all its

zeros are real-valued numbers.

Consider now another polynomial de�ned as

�(G;C) = �(G;C; x) = �(G; x)� 2�(G� C; x)

where C is a circuit of the graph G and G�C is the subgraph obtained by deleting

all the vertices of C from G; if C is a Hamiltonian circuit of G, then �(G�C) � 1.

The zeros of the polynomial � play a distinguished role in Aihara's theory of

cyclic conjugation [1], [12]. It has been recently conjectured [8] that the polynomial

�(G;C) is real for all cyclic graphs G and all circuits C contained in them. The

conjecture was supported by proving its validity for various classes of graphs [7],

[8], [11], [12].
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In the case of unicyclic graph �(G;C) coincides with the characteristic poly-

nomial. Hence we have the following elementary result.

Observation 1. If G is a unicyclic graph, then �(G;C) is a real polynomial.

The above observation may serve as a motivation for a generalization of the

�-polynomial concept. De�ne

�t(G;C; x) = �t(G;C) = �(G; x)� 2t�(G� C; x):

Observation 2. If G is a unicyclic graph and �1 � t � 1, then �t(G;C) is a

real polynomial.

This result follows from the fact that it is possible to construct a weighted

digraph Gt whose characteristic polynomial coincides with �t(G;C). In order to

do this, an edge of G belonging to the circuit C is to be exchanged by a pair of

oppositely directed arcs, having weights ei� and e�i�. The characteristic polynomial

of Gt obeys the relation [6], [9], [12]

(1) �(Gt) = �(G)� [ei� + e�i�]�(G� C) = �(G)� 2t�(G�C);

where t = cos �. For � being a real number the adjacency matrix of Gt is Hermitean

and therefore all the zeros of �(Gt) are real-valued.

Examples show that when the parameter t is less than �1 or greater than

+1, then the �t-polynomial of a unicyclic graph may have complex-valued zeros.

The simplest such example is provided by the triangle, whose �t-polynomial is

x3� 3x� 2t. It is easy to verify that all the three zeros of this polynomial are real

if and only if jtj � 1.

The result formulated here as Observation 2 can easily be extended to graphs

possessing several circuits, such that no two circuits share a common edge [6], [9]:

Observation 3. If G is a graph whose no edge belongs to more than one circuit

and �1 � t � 1, then for all circuits C of G, �t(G;C) is a real polynomial.

In what follows we show that the �-polynomials of some other polycyclic

graphs are also real for all values of t, jtj � 1.

2. THE COMPOUND GRAPHS Gn AND Gn[]

The one-vertex graph will be denoted by K1 and its vertex labeled by u0.

Let H be an n-vertex graph and let S be a subset of its vertex set. Then by

H[S] we denote the (n+ 1)-vertex graph obtained by connecting all elements of S

with the vertex u0 of K1.

Let G be a graph and v and w its two (not necessarily distinct) vertices.

Construct the graph Gn by taking n copies (n > 1) of G and joining the vertex v
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Fig. 1

of the (j + 1)-th copy to the vertex w of the j-th copy, j = 1; 2; . . . ; n� 1 and, in

addition, the vertex v of the �rst copy to the vertex w of the n-th copy (see Fig. 1).

The compound graph Gn has the following obvious property: The deletion

from Gn of any vertex labeled by v results in the same subgraph; this subgraph

will be denoted by Gn � v.

If G is a tree then Gn is unicyclic and its unique circuit will be denoted by

C�. Since all the vertices of Gn, labeled by v, necessarily belong to the circuit C�,

the subgraph Gn � v is acyclic (but needs not be connected).

Denote by n and n the sets of vertices of Gn labeled by v and w, respectively

(see Fig. 1). The cardinalities of these sets are, of course, equal to n.

Lemma 1. For any � n,

(2) �(Gn[]) = x�(Gn)� jj�(Gn� v)

where jj stands for the cardinality of the set .

If = ? then Gn[] is isomorphic to the disconnected graph Gn[K1.

Because of the identity [2], [5]

(3) �(Ha [Hb) = �(Ha)�(Hb)

and the fact that �(K1) = x, in the case when is the empty set, eq. (1) is satis�ed

in a trivial manner.

It remains, therefore, to examine only the case when the set is non-empty.

If e is an edge of the graph H, connecting the vertices p and q, then [2], [5],

(4) �(H) = �(H � e)� �(H � p� q):

Applying the recurrence relation (4) to an edge of Gn[], connecting a vertex from

with u0, we obtain

�(Gn[]) = �(Gn[])� �(Gn � v)

where 0 = n fvg. If 0 is non-empty, then the application of (4) has to be repeated

to the edge of the graph Gn[
0], connecting u0 and v0, v0 2 0. This yields

�(Gn[]) = �(Gn[
00])� 2�(Gn � v)

where 00 = nfv; v0g. If 00 is non-empty then the procedure has to be repeated again,

etc. Ultimately we arrive at

�(Gn[]) = �(Gn [K1) � jj�(Gn � v):

Lemma 1 follows now from eq. (3).�
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In a fully analogous manner we may deduce

Lemma 2. Let G� v and G�w be isomorphic graphs and v 6= w. Then for any

� n and � n

�(Gn[ [ ]) = x�(Gn) � (jj+ jj)�(Gn � v):

According to Lemmas 1 and 2 the matching polynomials of Gn[] and

Gn[ [ ] are independent of the actual choice of the vertices to which the vertex

u0 is connected and depend only on their number, i.e. on the cardinalities of the

sets and .

3. AN AUXILIARY WEIGHTED DIGRAPH

Denote by �(H) = �(H;x) the characteristic polynomial of the graph H.

Suppose that the vertices p and q of H are connected by an edge e and that the

weight of this edge is k. A well known result of graph spectral theory [3] is the

relation

(5) �(H) = �(H � e)� k2�(H � p� q);

which holds provided e is a bridge. (Recall that an edge e is said to be a bridge of

the graph H if H � e has more components than H.) Another well known identity

for the characteristic polynomial is [3]

(6) �(Ha [Hb) = �(Ha)�(Hb):

Let 1 be a one-element subset of n. Then Gn[
1]k denotes the graph obtained

from Gn[
1] by associating the weight k to the edge e0 which connects the vertex u0

with the vertex v 2 1. Observe that e0 is a bridge.

As already pointed out, ifG is a tree then Gn is unicyclic and its unique circuit

is denoted by C�. If G is a tree then Gt
n[

1]k denotes the digraph obtained from

Gn[
1]k by exchanging an edge (any edge) belonging to C� by a pair of oppositely

directed arcs, having weights ei� and e�i�, t = cos �.

Applying eq. (5) to the edge e0 of Gt
n[

1]k and bearing in mind eq. (6) as well

as �(K1) = x, we immediately arrive at

Lemma 3. If G is a tree then

�(Gt
n[

1]k) = x�(Gt
n)� k2�(Gn � v):

Further, as a special case of eq. (1) we have

Lemma 4. If G is a tree then

�(Gt
n) = �(Gn)� 2t�(Gn �C�):
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4. THE MAIN RESULTS

Theorem 1. If G is a tree, then for all t, �1 � t � 1, all n > 1 and all � n,

�t(Gn[]; C
�) = �(Gt

n[
1]k)

with k =
p
jj.

Theorem 2. Let G � v and G � w be isomorphic graphs and v 6= w. If G is a

tree, then for all t, �1 � t � 1, all n > 1, all � n and all � n,

�t(Gn[ [ ]; C�) = �(Gt
n[

1]k)

with k =
p
jj+ jj.

From the de�nition of the �t-polynomial,

�t(Gn[]; C
�) = �(Gn[])� 2t�(Gn � C� [K1):

Using eq. (3) and the fact that �(K1) = x we get

�t(Gn[]; C
�) = �(Gn[])� 2xt�(Gn �C�)

which combined with Lemma 1 yields

(7) �t(Gn[]; C
�) = x[�(Gn)� 2t�(Gn � C�)]� jj�(Gn� v):

If a graph H is acyclic, then [2], [5], �(H) � �(H). Consequently, �(Gn � v) �

�(Gn � v). Bearing this fact in mind and using Lemma 4, the right-hand side of

(7) is readily transformed into

�t(Gn[]; C
�) = x�(Gt

n) � jj�(Gn� v):

Theorem 1 follows now from Lemma 3.�

Proof of Theorem 2 is analogous, except that instead

of Lemma 1 we now have to employ Lemma 2.�

All the zeros of the characteristic polynomial of the auxiliary weighted digraph

Gt
n[

1]k are real-valued [3]. Therefore we have

Corollary 1.1. Under the conditions speci�ed in Theorem 1, �t(Gn[]) is a real

polynomial.

Corollary 2.1. Under the conditions speci�ed in Theorem 2, �t(Gn[[ ]) is a real

polynomial.

Theorems 1 and 2 can be further extended. Let the graphs Gn[]T and Gt
n[

1]kT

be obtained by identifying the vertex u0 of Gn[] and Gt
n[

1]k, respectively, with the

root of a rooted tree T . Then we can prove the following results.

Theorem 3. Let T be an arbitrary rooted tree. Theorem 1 remans valid if Gn[]

and Gt
n[

1]k are exchanged by Gn[]T and Gt
n[

1]kT , respectively.
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Theorem 4. Let T be an arbitrary rooted tree. Theorem 2 remains valid if

Gn[ [ ] and Gt
n[

1]k are exchanged by Gn[ [ ] and Gt
n[

1]kT , respectively.

Theorems 3 and 4 imply that under conditions speci�ed in Theorems 1 and 2,

�t(Gn[]T;C
�) and �t(Gn[ [ ]T;C�) are real polynomials for all rooted trees T and

for all values of the parameter t, �1 � t � 1.

Remark. The special case of Theorems 1 and 3, when the vertices v and w

coincide and when t = 1 was previously reported by the author in [7].
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