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A CONTRIBUTION TO THE STUDY
OF REAL GRAPH POLYNOMIALS

Tvan Gutman

Let G be a graph and C its circuit. Let o stand for the matching polynomial.
Let ¢ be a real number, such that [¢| < 1. We demonstrate that for certain
classes of compound graphs the polynomial 3:(G,C,z) = o(G,z) — 2ta(G - C, x)
is real, i.e. that all its zeros are real.

1. INTRODUCTION

Let GG be a graph containing n vertices and m edges. For k > 1 let m(G, k)
denote the number of ways in which k independent edges can be selected in G. In
addition to this, let m(G,0) = 1 and m(G, 1) = m. Then the matching polynomial
of (G is defined as

a(G) = a(G,z) = > _(=1)fm(G, k)"~

E>0

The theory of the matching polynomials is nowadays well elaborated [2]. In
particular, it is known that «(G) is a real graph polynomial [4], i.e. that all its
zeros are real-valued numbers.

Consider now another polynomial defined as
B(G,C) =BG, Cx) = a(G,2) = 2a(G — C, )

where C'is a circuit of the graph G and G — C' is the subgraph obtained by deleting
all the vertices of C' from G if C' is a Hamiltonian circuit of G, then o(G —C) = 1.

The zeros of the polynomial § play a distinguished role in ATHARA’s theory of
cyclic conjugation [1], [12]. Tt has been recently conjectured [8] that the polynomial
B(G, C) is real for all cyclic graphs G and all circuits C' contained in them. The
conjecture was supported by proving its validity for various classes of graphs [7],
8], [11], [12].
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In the case of unicyclic graph (G, C) coincides with the characteristic poly-
nomial. Hence we have the following elementary result.

Observation 1. If G is a unicyclic graph, then §(G,C) is a real polynomial.

The above observation may serve as a motivation for a generalization of the
B-polynomial concept. Define

Be(G,Cx) = 3 (G,C) = a(G,2) — 2ta(G = C, z).

Observation 2. If G is a unicyclic graph and —1 < t < 1, then 3;(G,C) is a
real polynomial.

This result follows from the fact that it 1s possible to construct a weighted
digraph G* whose characteristic polynomial coincides with 3;(G, ). In order to
do this, an edge of GG belonging to the circuit C' is to be exchanged by a pair of
oppositely directed arcs, having weights ¢’ and e~*. The characteristic polynomial
of G obeys the relation [6], [9], [12]

(1) o(GY) = a(G) — [¢" + e *]a(G - C) = a(G) — 2ta(G - O),

where ¢ = cos . For # being a real number the adjacency matrix of G¢ is Hermitean
and therefore all the zeros of ¢(G*) are real-valued.

Examples show that when the parameter ¢ is less than —1 or greater than
+1, then the g;-polynomial of a unicyclic graph may have complex-valued zeros.
The simplest such example is provided by the triangle, whose f;-polynomial is
3 — 3z — 2t. It is easy to verify that all the three zeros of this polynomial are real
if and only if |¢] < 1.

The result formulated here as Observation 2 can easily be extended to graphs

possessing several circuits, such that no two circuits share a common edge [6], [9]:

Observation 3. If G s a graph whose no edge belongs to more than one circuit
and —1 <t < 1, then for all circuits C' of G, (G, C) is a real polynomial.

In what follows we show that the [-polynomials of some other polycyclic
graphs are also real for all values of ¢, |{| < 1.

2. THE COMPOUND GRAPHS G,, AND G,

The one-vertex graph will be denoted by K; and its vertex labeled by ug.

Let H be an n-vertex graph and let S be a subset of its vertex set. Then by
H[S] we denote the (n + 1)-vertex graph obtained by connecting all elements of S
with the vertex ug of K.

Let GG be a graph and v and w its two (not necessarily distinct) vertices.
Construct the graph G,, by taking n copies (n > 1) of G and joining the vertex v
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Fig. 1

of the (j + 1)-th copy to the vertex w of the j-th copy, j =1,2,... ,n— 1 and, in
addition, the vertex v of the first copy to the vertex w of the n-th copy (see Fig. 1).

The compound graph G, has the following obvious property: The deletion
from G, of any vertex labeled by v results in the same subgraph; this subgraph
will be denoted by G\, — v.

If G is a tree then (,, is unicyclic and its unique circuit will be denoted by
C*. Since all the vertices of G, labeled by v, necessarily belong to the circuit C*,
the subgraph G, — v is acyclic (but needs not be connected).

Denote by , and , the sets of vertices of (G, labeled by v and w, respectively
(see Fig.1). The cardinalities of these sets are, of course, equal to n.

Lemma 1. For any C ,,
(2) a(Gal]) = za(Gn) — [|a(Gn —v)
where || stands for the cardinality of the set .

If = @ then G,[] is isomorphic to the disconnected graph G,, U K.
Because of the identity [2], [5]
(3) a(Ha U Hy) = a(Hg)a(Hp)
and the fact that a(K1) = z, in the case when is the empty set, eq. (1) is satisfied
in a trivial manner.
It remains, therefore, to examine only the case when the set is non-empty.

If e is an edge of the graph H, connecting the vertices p and ¢, then [2], [5],
(4) a(H)=a(H —e)—a(H—p—q).

Applying the recurrence relation (4) to an edge of G,[], connecting a vertex from
with ug, we obtain

a(Gal]) = a(Grll) = a(Gn — )
where * = \ {v}. If / is non-empty, then the application of (4) has to be repeated
to the edge of the graph G,['], connecting ug and v’, v €. This yields

a(Gnl]) = (Ga["]) = 20(CGn = v)

where = \{v,v’}. If 7 is non-empty then the procedure has to be repeated again,
etc. Ultimately we arrive at

a(Gal]) = (G U K1) — [|a(G — ).

/

Lemma 1 follows now from eq. (3).0
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In a fully analogous manner we may deduce

Lemma 2. Let G —v and G — w be isomorphic graphs and v # w. Then for any
C,and C,
(Gu[U]) = 2a(Gn) = ([ + [)a(Gn = v).
According to Lemmas 1 and 2 the matching polynomials of G,[] and
Gp| U] are independent of the actual choice of the vertices to which the vertex

ug 18 connected and depend only on their number, i.e. on the cardinalities of the
sets and .

3. AN AUXILIARY WEIGHTED DIGRAPH

Denote by ¢(H) = ¢(H,x) the characteristic polynomial of the graph H.
Suppose that the vertices p and ¢ of H are connected by an edge e and that the
weight of this edge is k. A well known result of graph spectral theory [3] is the
relation

(5) $(H) = ¢(H —e) = k*¢(H — p—q),

which holds provided e is a bridge. (Recall that an edge e is said to be a bridge of
the graph H if H — e has more components than H.) Another well known identity
for the characteristic polynomial is [3]

(6) ¢(HaUHb) :¢(Ha)¢(Hb)~

Let ! be a one-element subset of ,,. Then G,,[*]* denotes the graph obtained
from G, [!] by associating the weight k to the edge eq which connects the vertex ug
with the vertex v € 1. Observe that ey is a bridge.

As already pointed out, if G is a tree then (7, is unicyclic and its unique circuit
is denoted by C*. If G is a tree then GL[']* denotes the digraph obtained from
Gn[']* by exchanging an edge (any edge) belonging to C* by a pair of oppositely
directed arcs, having weights e'® and e~ ¢ = cos .

Applying eq. (5) to the edge eg of G%[']* and bearing in mind eq. (6) as well
as ¢(K1) = x, we immediately arrive at

Lemma 3. IfG s a tree then
BG[F) = 6(GL) — K26(Gr — v).
Further, as a special case of eq. (1) we have
Lemma 4. IfG s a tree then

$(GL) = a(Gin) — 2ta(Gn — C).
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4. THE MAIN RESULTS
Theorem 1. If G is a tree, then for allt, —1 <t <1, alln>1 and all C ,,
Be(Gnll, C7) = S(GLI'T)
with k = \/]|.

Theorem 2. Let G — v and G — w be isomorphic graphs and v # w. If G is a
tree, then for allt, —1 <t <1, alln>1, all C, and all C,,

Be(GalU],C7) = 6(GLI'T)
with k = /][ + |-
From the definition of the 8;-polynomial,
Bi(Gnl], C7) = a(Gal]) — 2ta(G, — C* U Ky).
Using eq. (3) and the fact that a(K;) = = we get
Pe(Gll, €7) = a(Grl]) = 22ta(Gn - C7)
which combined with Lemma 1 yields
(7) Be(Gnl], €7) = 2la(Grn) = 2ta(Gn = C7)] = [|a(Gr — v).

If a graph H is acyclic, then [2], [5], ¢(H) = «(H). Consequently, a(G) — v)
#(Gp — v). Bearing this fact in mind and using Lemma 4, the right-hand side o
(7) is readily transformed into

Bi(Gall, C7) = 2(Gy,) = lla(Gn = v).

Theorem 1 follows now from Lemma 3.0

-y

Proof of Theorem 2 is analogous, except that instead
of Lemma 1 we now have to employ Lemma 2.0

All the zeros of the characteristic polynomial of the auxiliary weighted digraph

Gt ['F are real-valued [3]. Therefore we have

Corollary 1.1. Under the conditions specified in Theorem 1, B;(Gy][]) is a real
polynomial.

Corollary 2.1. Under the conditions specified in Theorem 2, 5 (Gp[U]) is a real
polynomial.

Theorems 1 and 2 can be further extended. Let the graphs G,,[]T and G%,[}]*T
be obtained by identifying the vertex ug of G,[] and G% [']*, respectively, with the
root of a rooted tree T'. Then we can prove the following results.

Theorem 3. Let T be an arbitrary rooted tree. Theorem 1 remans valid if G,[]
and G [ are exchanged by G[|T and GL[']*T, respectively.
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Theorem 4. Let T be an arbitrary rooted tree. Theorem 2 remains valid if
Gn[U] and GL[Y* are exchanged by Gn[U] and GL[YFT, respectively.

Theorems 3 and 4 imply that under conditions specified in Theorems 1 and 2,
Be(GR[]T, C*) and G (G, [U]T, C*) are real polynomials for all rooted trees 7" and
for all values of the parameter ¢, —1 <¢ <1.

Remark. The special case of Theorems 1 and 3, when the vertices v and w
coincide and when ¢ = 1 was previously reported by the author in [7].
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