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SOME REMARKS ON THE PROBLEM

OF MULTILATERAL COMPENSATION

Slobodan Simi�c, Vladan Milanovi�c

In this note we �rst give an exact (polynomial time) algorithm for solving the

problem of multilateral compensation. For the large scale instances we propose

some heuristics for �nding suboptimal solutions.

0. INTRODUCTION

Let D(w) = (V;A;w) be a weighted digraph with the vertex set V and the
weight function w : A 7! N0 de�ned on its arc set A, i.e. w(a) is a nonnegative
integer for each a 2 A. If w(a) = 0 for some a, we will sometimes ignore a as
an element of A. Given D(w), D denotes the underlying digraph. A reduction
D(w0) of D(w) is a weighted digraph obtained from D(w) by reducing the weights
of some arcs, i.e. D(w0) = (V;A;w0) with 0 � w0(a) � w(a) for each a 2 A.
Two reductions D(w0) and D(w00) are complementary (with respect to D(w)) if
w(a) = w0(a)+w00(a) for each a 2 A. The weight of some digraph is the sum of its
arc weights. All other terminology, not mentioned below, follows [3].

Let C be an (oriented) cycle of D(w), or D. If the weights of all arcs of C are
reduced by the same (integral) amount so that the resulting arc weights are still
nonnegative, we say that C is partially compensated or, for short, only compen-
sated. In particular, if the weight of at least one arc of C became zero, we rather
say that C is totally compensated. Clearly, any compensation of some cycle, or
some cycles in turn, gives a reduction of D(w). A reduction obtained as a sequence
of cycle compensations is called a compensation of D(w). A total compensation is
a compensation which does not admit any further cycle compensation. We are now
in the position to state our problem:

For a weighted digraph D(w), �nd a compensation having the minimum

weight.
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This problem will be in further addressed as the problem of multilateral com-
pensation (MLC) problem. Before attempting to solve it we give some comments.
At �rst moment it seems that a simple greedy algorithm consisting of cycle com-
pensations leads to a solution. To see that this is not true, consider the following
example:

Both digraphs (a) and (c) are total compensations of the digraph (b), each of them
obtained by only one cycle compensation.

A compensation which reduces the weight of all arc to zero is called a perfect
compensation. In general, not every weighted digraph admits a perfect compensa-
tion. For instance, if the underlying digraph is not strongly connected, then the arcs
between di�erent components do not belong to any cycle and hence their weights
cannot be reduced.

The balance of some vertex v 2 V is the di�erence between the weight sums
of outgoing and ingoing arcs at v, i.e.

�(v) =
X
vx2A

w(vx)�
X
yv2A

w(yv);

where ab denotes the arc between vertices a and b. If �(v) = 0 for some vertex v,
we say that v itself is balanced, or a 0-vertex ; otherwise, if �(v) > 0 (or �(v) < 0)
holds, then v is non-balanced and moreover, it is a p-vertex (resp. an n-vertex).
The meaning of vertex sets V0, Vp, Vn (which partition V ) is now evident from the
above context.

1. SOME PRELIMINARY OBSERVATIONS

Our MLC problem (as usual with problems of combinatorial optimization)
can be formulated as an LP (linear programming) problem. For this purpose we
�rst give some more notation.

Recall, an elementary cycle is a cycle passing through each vertex at most
once. Denote by C the set of all elementary cycles of D(w) (or D). Let Ca � C

be the set of those cycles containing an arc a. For any cycle Ci 2 C, let li be
its length (number of arcs), and let xi be the amount by which the weights of its
arcs are reduced. Then our MLC problem (in the maximization form) becomes the
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following LP problem:

max

�X
Ci2C

lixi

�
; subjected to

X
Ci2Ca

xi � w(a) (a 2 A); xi � 0:

Although this formulation gives an immediate algorithm, it is far from being prac-
tical. One reason is that it concerns the whole cycle space whose cardinality, in
the worst case, is exponential in the size of digraph, i.e. number of vertices. So we
are in start restricted only to digraphs of small sizes. The only signi�cance of this
formulation is the theoretical one.

We now turn our attention to more promising technique based on combinato-
rial tools. The key observation is the next theorem (a straightforward reformulation
of the Euler theorem, see [3]).

Theorem 1. A weighted digraph D(w) admits a perfect compensation if and only

if all its vertices are balanced.

Note �rst that the condition is necessary (any compensation does
not change the vertex balance). To prove the su�ciency, we will transform our
weighted digraph D(w) to multidigraph Dm as follows: each arc a of D(w) is
replaced in Dm by w(a) parallel arcs joining the same pair of vertices. Since each
vertex of D(w) is balanced, it follows that each vertex of Dm has equal ingoing and
outgoing degrees. By the Euler theorem it follows that the arc set of Dm can be
covered by disjoint cycles, and thus D(w) admits a perfect compensation.�

An immediate consequence of this theorem is that our original problem is
equivalent to the problem of �nding a reduction of D(w) which is both, balanced
and has the largest weight. In other words, if D(w) is represented as the sum
of two complementary reductions, say D(w0) and D(w00), where the former one
is balanced, then we have to �nd either D(w0) of maximum weight, or D(w00) of
minimumweight. In the next section we will provide an e�cient solution based on
the latter possibility.

2. EXACT ALGORITHM FOR MLC PROBLEM

Suppose now we want to decompose D(w) as the (formal) sum of two com-
plementary reductions D(w0) and D(w00), where D(w0) is balanced. Of course, we
may assume that D(w) is not balanced itself, since otherwise our problem is trivial.
To get the desired decomposition, we �rst extend D(w) to D0(W ) by adding two
vertices, say s (source) and t (sink), such that:

| s is joined to all vertices of positive balance (belonging to Vp), and if x 2 Vp
then the weight of the arc sx is �(x);

| each vertex of negative balance (belonging to Vn) is joined to t, and if y 2 Vn
then the weight of the arc yt is ��(y).

Note now that all vertices in D0(W ), except s and t, are balanced.
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Theorem 2. If s and t are the source and the sink of D0(W ), then �(s) = ��(t).

If we interpret the arc weights of D0(W ) as the arc 
ows, then
the assertion is an immediate consequence of the conservation law, i.e. the �rst
Kirchho�'s law.�

If further on we interpret D0(W ) as a capacited network with arc capacities
equal to the arc weights, then the maximum amount of 
ow that we can push from
s to t is bounded from above by �(s). Moreover, this amount of 
ow can be pushed
indeed. To see this, add to D0(W ) an arc ts with a weight �(s). The digraph
obtained has all vertices balanced, and that (by Theorem 1) proves our claim.

Suppose now we have pushed in D0(W ) the maximum 
ow from s to t. In
other words, we have some 
ow '(a) (0 � '(a) � w(a)) for each a 2 A (an arc
of D(w)); 
ows in arcs incident to s or t are maximal and equal to their capacities.
We next show how this 
ow pattern induces a desired decomposition of D(w). For
each a 2 A de�ne w0(a) = w(a) � '(a) and w00(a) = '(a). Then all vertices of
D(w0) are balanced (by the conservation of 
ow at each vertex). On the other
hand, if we have some decomposition of D(w) as required, it induces (by reversing
the above) a maximal 
ow in the extended digraph D0(W ). So to get a solution
to our optimization problem we only need to �nd a maximum 
ow for which the
sum of 
ows through all arcs of D(w) is the smallest possible. In other words, if
we take a cost function which assigns one unit for sending a unit amount of 
ow
through each arc, then our problem becomes a minimum cost 
ow (MCF) problem
in the extended digraph D0(W ), where �(s) is a value of 
ow (i.e. target 
ow) to be
pushed from s to t. These conclusions can be summarized in the following theorem.

Theorem 3. The MLC problem is (polynomially) reducible to the MCF problem.

We are now in a position to comment the e�ciency of algorithms by which
we can solve the MLC problem. Since the MCF problem can be solved by the
algorithm of complexity O(n2m), where n is the number of vertices and m the
number of arcs (see [6, 7], the same applies to MLC problem since the reduction
e�orts can be neglected. Furthermore, to speed up any MCF algorithm applied, we
can �rst decompose D (i.e. D(w)) into strongly connected components and then
treat each component in turn. (Note that the algorithm for determining strongly
connected components of any digraph is linear in m, see [8]). At this place it is
worthwhile mentioning that during the experiments with large digraphs the authors
have always observed a situation with one giant component of strong connectedness
and a few small ones. The explanation of this phenomenon was recently given in [5].

3. LARGE SCALE INSTANCES OF MLC PROBLEM

In this section we are concerned with some ideas of treating the instances of
MLC problem where the size of the digraph D(w) is very large (say, number of
vertices is more than 104). If so the running time of the algorithmic solution is too
big (usually more than 24 hours). In further we will discuss some possibilities of
�nding not optimal, but rather near optimal solutions.
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The �rst very general strategy was based on making use of some approxima-
tions to our original problem. For example, we can eliminate all arcs with small
weights, or all vertices which are very unbalanced etc. The most powerful approx-
imation from the experimental evidence, was obtained by eliminating all vertices
with small capacities.

The capacity of some vertex v 2 V is the minimumof weight sums of outgoing
and ingoing arcs at v, i.e.

c(v) = min

�X
vx2A

w(vx);
X
yv2A

w(yv)

�
:

In the rest of this section we are o�ering a procedure for �nding an approx-
imate solution to the original MLC problem (not with modi�ed input instance)
which is (by the experimental evidence) very close to the optimal one. It consists
of two phases. In the �rst one (Phase I) we �nd a total compensation of D(w)
(not necessarily of minimum weight) in time which is comparatively shorter than
the time required by the exact algorithm. In the second one (Phase II) we make
use of an iterative procedure to reduce the weight of the total compensation so far
obtained, keeping it total all the time. The main bene�t of this approach is that
we can stop our iterative procedure whenever we want | we always have a feasible
solution to our problem.

Phase I: Let D0(W ) be the extended digraph of D(w) as described in the pre-
vious section. Consider then a sequence of digraphs D1(w1); . . . ; Dk(wk) (k < n)
obtained as follows. Let D1(w1) = D0(W ). Di+1(wi+1) is obtained from Di(wi)
by making use of the layered digraph Li which consists of: the source s (0-th
layer), the sink t ((i + 2)-th layer) and i + 1 layers between; the j-th layer of Li
(1 � j � i+1) consists of those vertices of Di(wi) which are at distance j from the
source s, where by the distance we assume the length of the shortest path in the
underlying digraph. Each vertex from some layer is joined by an arc (of the same
weight) to any vertex from the next layer, if they were adjacent in Di(wi). To get
Di+1(wi+1), we �rst push from s to t in Li the maximum (possible) 
ow. This

ow pattern is then used to reduce the arc weights of Di(wi) and hence to obtain
Di+1(wi+1). This procedure is repeated until the total 
ow through all layered
digraphs became equal to maximum 
ow (target 
ow) in D0(W ). By making use
of the max-
ow min-cut theorem of Ford and Fulkerson, we can easily see that this

ow can be indeed pushed (in this way) from s to t in digraph D0(W ).

Phase II: We �rst notice that in the �nal digraph, i.e. Dk(wk), the vertices s
and t are isolated. By deleting s and t we get a digraph with all vertices being
balanced. This digraph was earlier (within the exact algorithm) denoted by D(w0).
Its complementary reduction (with respect to D(w)) is D(w00). It corresponds to
a total compensation of D(w). Generally, its weight need not be minimal. The
purpose of this phase is to exchange some weighted paths between the complemen-
tary reductions in order to improve the feasible solution obtained so far. The basic
idea is as follows. Let a and b be two vertices of D(w0), and D(w00) as well. Let
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P 0 of length l0 (P 00 of length l00) be a path from a to b in D(w0) (resp. D(w00)).
Suppose also " > 0 is some su�ciently small number. If l0 < l00, we can increase
the arc weights of P 0 in D(w0) by decreasing the arc weights of corresponding arcs
in D(w00), and also decrease the arc weights of P 00 in D(w00) by increasing the arc
weights of corresponding arcs inD(w00). With this modi�cation our complementary
reductions remain as required: the only di�erence is that the weight of (l00 � l0)"
is exchanged between the reductions. In other words, our feasible solution is im-
proved by the above amount. To realize these modi�cations we make use of some
heuristics. Any other approach is time consuming.

4. CONCLUSION

In this paper we have o�ered an exact algorithm for solving the MLC prob-
lem reducing it to the MCF problem. By applying the algorithm of Busacker
and Gowen for solving MCF we have achieved the satisfactory results only for
graphs up to 500 vertices (the running time was within few hours on the target
machine). With input graphs having more than 10000 vertices the running time
was prohibitively large. Applying the proposed two phase heuristic, we were able
to achieve the suboptimal solutions in a fraction of minute; the relative deviation
(w.r.t. the optimal solutions) was always less than 5% for the graphs up to 500
vertices.

Some further experimental results are summarized in the next table.

No. vertices No. arcs % MLC time (min)

156 725 6.02 0.5

1641 21597 11.84 3.4

6336 127631 11.52 51.5

9861 231090 17.69 95.0

12417 363629 22.80 103.5

Besides the number of vertices and arcs of input graphs, we have included the
relative amount being compensated (w.r.t. the total weight of the input graph, i.e.
the sum of all arc weights at beginning) and the running time of our heuristic.

More details on experiments (and implementations as well) are reported at
the meeting of FINASOFT (see [9]). Finally we need to add that this work has been
motivated by an actual problem encountered by \The Social Accountancy Service
of Yugoslavia". The authors are very thankful to this Institution for enabling us
to use their computer facilities in conducting the large amount of experiments on
real data.
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