ON A MODIFIED BIRKHOFF-YOUNG QUADRATURE FORMULA FOR ANALYTIC FUNCTIONS

Malcolm T. McGregor

Earlier D. $Đ$. Tos̃ić derived a modification of the Birkhoff- Young quadrature formula for analytic functions, where the error term $R_{M F}$ is given as an infinite series. In this paper a direct proof of the modified formula is given where the error term appears in integral form.

1. INTRODUCTION

In [1] Birkhoff and Young derived the five-point interpolation formula

$$
\begin{align*}
\int_{z_{0}-h}^{z_{0}+h} f(z) \mathrm{d} z=\frac{8}{5} h f\left(z_{0}\right)+\frac{4 h}{15}\left(f \left(z_{0}\right.\right. & \left.+h)+f\left(z_{0}-h\right)\right) \tag{1}\\
& -\frac{h}{15}\left(f\left(z_{0}+i h\right)+f\left(z_{0}-i h\right)\right)+R_{B Y}
\end{align*}
$$

where f is analytic in a region D which contains the line-segment of integration, and the error term $R_{B Y}$ vanishes on polynomials of degree 5 or less. In [2] D. D. Tošić obtained a modified version of (1), namely

$$
\text { (2) } \begin{aligned}
\int_{z_{0}-h}^{z_{0}+h} f(z) \mathrm{d} z=\frac{16}{15} & h f\left(z_{0}\right) \\
& +\frac{h}{6}[7 / 5+\sqrt{7 / 3}]\left[f\left(z_{0}+h \sqrt[4]{3 / 7}\right)+f\left(z_{0}-h \sqrt[4]{3 / 7}\right)\right] \\
& +\frac{h}{6}[7 / 5-\sqrt{7 / 3}]\left[f\left(z_{0}+i h \sqrt[4]{3 / 7}\right)+f\left(z_{0}-i h \sqrt[4]{3 / 7}\right)\right] \\
& +R_{M F},
\end{aligned}
$$

where the error term $R_{M F}$ is given as an infinite series

$$
R_{M F}=\frac{h^{9}}{793800} f^{(8)}\left(z_{0}\right)+\frac{h^{11}}{61122600} f^{(10)}\left(z_{0}\right)+\cdots,
$$

and integration is taken along the line-segment with end-points $z_{0}-h$ and $z_{0}+h$. Using $\int_{-1}^{1} e^{x} \mathrm{~d} x$, D. Đ. Tošić in [2] compares the Birkhoff-Young fivepoint formula, the three-point Gauss-LEGENDRE formula, and the five-point modified Birkhoff-Young formula. It would appear that the modified BirkhoffYoung formula gives the greatest accuracy in this case.

In this note we give an elementary derivation of the modified BirkhoffYoung formula (2), and the error term $R_{M F}$ now appears in integral form. As in [2] we begin by showing that

$$
\begin{align*}
\int_{-1}^{1} f(z) \mathrm{d} z=2\left(1-\frac{1}{5 k^{4}}\right) f(0)+ & \left(\frac{1}{6 k^{2}}+\frac{1}{10 k^{4}}\right)(f(k)+f(-k)) \tag{3}\\
& +\left(-\frac{1}{6 k^{2}}+\frac{1}{10 k^{4}}\right)(f(k i)+f(-k i))+R
\end{align*}
$$

but now the error term R appears in integral form.

2. DERIVATION OF THE MODIFIED BIRKHOFF-YOUNG FORMULA

Using Cauchy's integral formula we have immediately

$$
\int_{-1}^{1} f(z) \mathrm{d} z=\int_{-1}^{1} \frac{1}{2 \pi i} \oint_{C} \frac{f(t)}{t-z} \mathrm{~d} t \mathrm{~d} z
$$

where C is a positively-oriented simple contour with the line-segment of integration lying inside C. Using the algebraic identity

$$
\frac{1}{t-z}=\frac{1}{t}+\frac{z}{t^{2}}+\frac{z^{2}}{t^{3}}+\frac{z^{3}}{t^{4}}+\frac{z^{4}}{t^{5}}+\frac{z^{5}}{t^{5}(t-z)}
$$

and interchanging the order of integration, we have

$$
\begin{aligned}
\int_{-1}^{1} f(z) \mathrm{d} z & =\frac{1}{2 \pi i} \oint_{C} f(t) \int_{-1}^{1}\left(\frac{1}{t}+\frac{z}{t^{2}}+\cdots+\frac{z^{4}}{t^{5}}\right) \mathrm{d} z \mathrm{~d} t+\frac{1}{2 \pi i} \int_{-1}^{1} \oint_{C} \frac{z^{5} f(t)}{t^{5}(t-z)} \mathrm{d} t \mathrm{~d} z \\
& =\frac{1}{\pi i} \oint_{C} f(t)\left(\frac{1}{t}+\frac{1}{3 t^{3}}+\frac{1}{5 t^{5}}\right) \mathrm{d} t+R_{1},
\end{aligned}
$$

giving

$$
\begin{equation*}
\int_{-1}^{1} f(z) \mathrm{d} z=2 f(0)+\frac{1}{\pi i} \oint_{C}\left(\frac{1}{3 t^{3}}+\frac{1}{5 t^{5}}\right) f(t) \mathrm{d} t+R_{1} \tag{4}
\end{equation*}
$$

where

$$
R_{1}=\frac{1}{2 \pi i} \int_{-1}^{1} \oint_{C} \frac{z^{5} f(t)}{t^{5}(t-z)} \mathrm{d} t \mathrm{~d} z .
$$

With $\alpha=k$ and $\alpha=i k$ in the algebraic identity

$$
\frac{1}{t-\alpha}+\frac{1}{t+\alpha}=\frac{2}{t}+\frac{2 \alpha^{2}}{t^{3}}+\frac{2 \alpha^{4}}{t^{3}\left(t^{2}-\alpha^{2}\right)}
$$

we deduce that

$$
\begin{aligned}
f(k)+f(-k)-f(i k)-f(-i k) & =\frac{1}{2 \pi i} \oint_{C}\left(\frac{1}{t-k}+\frac{1}{t+k}-\frac{1}{t-i k}-\frac{1}{t+i k}\right) f(t) \mathrm{d} t \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{4 k^{2}}{t^{3}} f(t) \mathrm{d} t+\frac{1}{2 \pi i} \oint_{C} \frac{4 k^{6}}{t^{3}\left(t^{4}-k^{4}\right)} f(t) \mathrm{d} t .
\end{aligned}
$$

We assume, of course, that the point $\pm k, \pm i k$ lie inside C. Rearranging terms we have

$$
\begin{equation*}
\frac{1}{\pi i} \oint_{C} \frac{f(t)}{3 t^{3}} \mathrm{~d} t=\frac{1}{6 k^{2}}(f(k)+f(-k)-f(i k)-f(-i k))+R_{2}, \tag{5}
\end{equation*}
$$

where

$$
R_{2}=-\frac{k^{4}}{3 \pi i} \oint_{C} \frac{f(t)}{t^{3}\left(t^{4}-k^{4}\right)} \mathrm{d} t .
$$

Similarly, with $\alpha=k$ and $\alpha=i k$ in the algebraic identity

$$
\frac{1}{t-\alpha}+\frac{1}{t+\alpha}=\frac{2}{t}+\frac{2 \alpha^{2}}{t^{3}}+\frac{2 \alpha^{4}}{t^{5}}+\frac{2 \alpha^{6}}{t^{5}\left(t^{2}-\alpha^{2}\right)}
$$

we deduce that

$$
\begin{aligned}
f(k)+f(-k)+f(i k)+f(-i k) & =\frac{1}{2 \pi i} \oint_{C}\left(\frac{1}{t-k}+\frac{1}{t+k}+\frac{1}{t-i k}+\frac{1}{t+i k}\right) f(t) \mathrm{d} t \\
& =\frac{1}{2 \pi i} \oint_{C}\left(\frac{4}{t}+\frac{4 k^{4}}{t^{5}}+\frac{4 k^{8}}{t^{5}\left(t^{4}-k^{4}\right)}\right) f(t) \mathrm{d} t
\end{aligned}
$$

and hence, on rearranging terms, we get

$$
\begin{equation*}
\frac{1}{\pi i} \oint_{C} \frac{f(t)}{5 t^{5}} \mathrm{~d} t=\frac{1}{10 k^{4}}(f(k)+f(-k)+f(i k)+f(-i k)-4 f(0))+R_{3}, \tag{6}
\end{equation*}
$$

where

$$
R_{3}=-\frac{k^{4}}{5 \pi i} \oint_{C} \frac{f(t)}{t^{5}\left(t^{4}-k^{4}\right)} \mathrm{d} t
$$

Using (4), together with (5) and (6), we get (3) with error term $R=R_{1}+R_{2}+R_{3}$, that is

$$
R=\frac{1}{2 \pi i} \int_{-1}^{1} \oint_{C} \frac{z^{5} f(t)}{t^{5}(t-z)} \mathrm{d} t \mathrm{~d} z-\frac{k^{4}}{15 \pi i} \oint_{C} \frac{\left(5 t^{2}+3\right) f(t)}{t^{5}\left(t^{4}-k^{4}\right)} \mathrm{d} t .
$$

Setting $k=\sqrt[4]{3 / 7}$ produces the modified Birkhoff-Young formula (2) in the case $z_{0}=0$ and $h=1$, with the remainder

$$
R_{M F}=\frac{1}{2 \pi i} \int_{-1}^{1} \oint_{C} \frac{z^{5} f(t)}{t^{5}(t-z)} \mathrm{d} t \mathrm{~d} z-\frac{1}{35 \pi i} \oint_{C} \frac{\left(5 t^{2}+3\right) f(t)}{t^{5}\left(t^{4}-\frac{3}{7}\right)} \mathrm{d} t
$$

By replacing $f(t)$ by $h f\left(z_{0}+h t\right)$, it is a simple task to obtain formula (2) with the remainder $R_{M F}$ in integral form.

REFERENCES

1.

: Numerical quadrature of analytic and harmonic functions. J. Math. and Phys., 29 (1950), 217-221.
2. : A modification of the Birkhoff- Young quadrature formula for analytic (1978), 73-77.

Department of Mathematics and Computer Science,
University College of Swansea,
Singleton Park,
Swansea SA 2 8PP,
Wales, Great Britain

