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ON A MODIFIED BIRKHOFF-YOUNG
QUADRATURE FORMULA
FOR ANALYTIC FUNCTIONS

Malcolm T. McGregor

Earlier D. -D. To�si�c derived a modi�cation of the Birkho�-Young quadrature

formula for analytic functions, where the error term RMF is given as an in�nite

series. In this paper a direct proof of the modi�ed formula is given where the

error term appears in integral form.

1. INTRODUCTION

In [1] Birkhoff and Young derived the �ve-point interpolation formula
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where f is analytic in a region D which contains the line-segment of integration,

and the error term RBY vanishes on polynomials of degree 5 or less. In [2] D. -D.

To�si�c obtained a modi�ed version of (1), namely
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where the error term RMF is given as an in�nite series

RMF =
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and integration is taken along the line-segment with end-points z0 � h and

z0 + h. Using
1R
�1

ex dx, D. -D. To�si�c in [2] compares the Birkhoff-Young �ve-

point formula, the three-point Gauss-Legendre formula, and the �ve-point mod-

i�ed Birkhoff-Young formula. It would appear that the modi�ed Birkhoff-

Young formula gives the greatest accuracy in this case.

In this note we give an elementary derivation of the modi�ed Birkhoff-

Young formula (2), and the error term RMF now appears in integral form. As in

[2] we begin by showing that
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but now the error term R appears in integral form.

2. DERIVATION OF THE MODIFIED

BIRKHOFF-YOUNG FORMULA

Using Cauchy's integral formula we have immediately
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where C is a positively-oriented simple contour with the line-segment of integration

lying inside C. Using the algebraic identity

1

t � z
=

1

t
+

z

t2
+

z2

t3
+

z3

t4
+

z4

t5
+

z5

t5(t � z)
;

and interchanging the order of integration, we have
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giving
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where
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With � = k and � = ik in the algebraic identity
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We assume, of course, that the point �k, �ik lie inside C. Rearranging terms we

have
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and hence, on rearranging terms, we get
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where
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Using (4), together with (5) and (6), we get (3) with error term R = R1+R2+R3,

that is
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Setting k = 4

p
3=7 produces the modi�ed Birkhoff-Young formula (2) in the

case z0 = 0 and h = 1, with the remainder
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By replacing f(t) by hf(z0 + ht), it is a simple task to obtain formula (2) with the

remainder RMF in integral form.
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