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ON A MODIFIED BIRKHOFF-YOUNG
QUADRATURE FORMULA
FOR ANALYTIC FUNCTIONS

Malcolm T. McGregor

Earlier D.D. To3ié¢ derived a modification of the Birkhoff-Young quadrature
formula for analytic functions, where the error term Rjsr is given as an infinite
series. In this paper a direct proof of the modified formula is given where the
error term appears in integral form.

1. INTRODUCTION

In [1] BIRKHOFF and YOUNG derived the five-point interpolation formula
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where f is analytic in a region D which contains the line-segment of integration,
and the error term Rpy vanishes on polynomials of degree 5 or less. In [2] D.D.
Tosi¢ obtained a modified version of (1), namely
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where the error term Rjsp is given as an infinite series
h9 hll
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and integration is taken along the line-segment with end-points zg — h and

RMF: f(lo)(ZO)_i_...’

1
zo+ h. Using [ e”da, D.D. ToSI¢ in [2] compares the BIRKHOFF-YOUNG five-
“1

point formula, the three-point GAUSS-LEGENDRE formula, and the five-point mod-
ified BIRKHOFF-YOUNG formula. It would appear that the modified BIRKHOFF-
YoUNG formula gives the greatest accuracy in this case.

In this note we give an elementary derivation of the modified BIRKHOFF-
Youna formula (2), and the error term Rprp now appears in integral form. As in
[2] we begin by showing that

/1 ez =2(1= )10+ (5 + 1o ) (0 + S(-0)

+(~g + 1o ) UKD + =k + R

but now the error term R appears in integral form.

2. DERIVATION OF THE MODIFIED
BIRKHOFF-YOUNG FORMULA

Using CAUCHY’s integral formula we have immediately

1
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where (' is a positively-oriented simple contour with the line-segment of integration
lying inside C'. Using the algebraic identity
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t—z ot 2 3
and interchanging the order of integration, we have
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giving

4) /f(z) dz = 27(0) + %f(:&% + 5%)]”(15) dt + Ry,

where
f{ e jdidz.
5¢( t —z)
C

With a = k and o« = ¢k in the algebraic identity
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we deduce that

F(B) + f(=k) = f(ik) — f(~ik) = ( 1 1
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We assume, of course, that the point £k, ik lie inside C'. Rearranging terms we
have

5 = I 0 AR - ) - S) + R
where » 50)
Ry = _% m dt.

Similarly, with & = k£ and « = ¢k in the algebraic identity
1 1 2 2a? 2ot 2a8
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we deduce that
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and hence, on rearranging terms, we get
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(f(k) + fF(=Fk) + F(ik) + F(—ik) — 4£(0)) + Rs,
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where

K It

bri ] t5(tt — kY)
c

Using (4), together with (5) and (6), we get (3) with error term R = Ry + Ro + Rs,

that 1s
Y [ (524 3)f(t)
dtd - dt.
~ omi /f{tf’ 1—2) 1571'2'?{ 5 (4 — k)
C
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Rz =— dt.

Setting & = {/3/7 produces the modified BIRKHOFF-YOUNG formula (2) in the
case zg = 0 and A = 1, with the remainder

1 (5t +3)f(t)
Ryr = %/%tf’ dtdz— 357”,% t5(t4 — %> dt.
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By replacing f(¢) by hf(zo + ht), it is a simple task to obtain formula (2) with the
remainder Rasp in integral form.
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