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SOME INEQUALITIES FOR THE CHI
SQUARE DISTRIBUTION FUNCTION

Milan J. Merkle

We prove several inequalities for the incomplete Gamma function and the Chi
square distribution function. A conjecture due to Ramanujan and proved by
Karamata is generalized and some results regarding the function a — Prob ()(i <
a) are obtained.

0. INTRODUCTION

In this paper we consider the following functions:
e Incomplete Gamma function

v

(1) vy(u,v) = /e_ttu_l de (u,v > 0),

0
e Chi square distribution function

(2) P(u,v) = ,YIEunq)V) = Prob (X%u < 27)),

where x3, is a Chi square random variable with 2u degrees of freedom, and

e the Gamma function
(3) I(u) = /(%7ttu71 dt = vy(u, +00).
0

Note that for integer values of u all three functions can be expressed in terms
of elementary functions. In particular, for u = n we have
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(4) Pn,v)=1-e¢7" 1+1)+£+£+.,,+ Pt
2 3! (n —1)!

= Prob (X >n—1),

where X is a PO1ssON random variable with the expectation equal to v.

Approximations for the function P(u,v) are usually given in terms of various
normal approximations (see [1] or [2]), valid as v — co. A number of approximations
and inequalities for functions v and P, is given in the book [3].

Using logarithmic convexity of the Gamma function, we were able to produce
(in [4]), new sharp bounds for the ratio I'(z + 3)/I'(z) and, in [5], bounds for
F(m)F(y)/FQ((x —+ y)/2). We now extend this method to a similar ratio with the
function P. In the second part of the article, we show some properties of the
function x — P(z,x), thus generalizing an old conjecture due to RAMANUJAN and
proved by KARAMATA in [6]. This result is related to the median of the Chi square
distribution function. We also prove an inequality for a ratio v(z+ 3,2+ 8)/v(z, x),
and, as a consequence, we show that the function P(z,z) is decreasing in z.

Let us note that some results obtained for the Chi square distribution function
can be easilly extended to a more general case of the Gamma distribution function

v

/eixttufl dt = X\*P(u, Av).
0

1. LOGARITHMIC CONVEXITY
It is easy to prove that the function u — «(u,v) is logaritmically convex on the

domain u > 0, for any v > 0 (see, for instance, the classical book [8] by E. ARTIN).
We proved in [4] that the function

1 1
(5) G(u) =logT'(u) — (u - 5) logu — T

is concave on u > 0. Therefore, the function

1 1
(6) o(u) =logy(u,v) —log T'(u) + <u - —) logu + —
2 12u

is convex on u > 0, for any v > 0. Using JENSSEN’s inequality

(7) plu+ ) < (1=0)¢p(u)+ Be(u+1),

where 8 € [0, 1], we can prove the following result:
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Theorem 1. For everyu >0, v > 0, 8 € [0,1] we have

Pt p0)
P1=B(u,v)PP(u+ 1,v) —

(8)

“(u*%)(lfﬁ)(“ + 1)(u+%)ﬂ 1 _ ﬂ ﬂ
T exp +
(u + [3)“+ﬂ—5 12u 12(u +1)

with the equality for 3 =0 and g = 1.

12(u1+ 6)) ’

A numerical investigation (see the table) shows that the inequality (8) sharp-
ens as u grows larger. Using a similar technique as in [4], one can put more terms in
the exponential, but it would improve the inequality only slightly. The main source
of the error is a rather high second u-derivative of the function logy(u,v), which
can not be reduced bacause we have neither explicit form nor bounds for it.

This inequality can be used for an approximation of P(u + 3,v) for integer

values of u.

Table: Relative errors in (8)

u v Jé] relative error (%)
2.00 2.00 0.10 1.38
2.00 2.00 0.30 3.07
2.00 2.00 0.50 3.47
2.00 2.00 0.70 2.76
2.00 2.00 0.90 1.12
4.00 2.00 0.10 0.39
4.00 2.00 0.30 0.87
4.00 2.00 0.50 1.00
4.00 2.00 0.70 0.82
4.00 2.00 0.90 0.34

12.00 10.00 0.10 0.13
12.00 10.00 0.30 0.29
12.00 10.00 0.50 0.34
12.00 10.00 0.70 0.28
12.00 10.00 0.90 0.12
24.00 19.00 0.10 0.05
24.00 19.00 0.30 0.11
24.00 19.00 0.50 0.13
24.00 19.00 0.70 0.10
24.00 19.00 0.90 0.04




92 Milan J. Merkle

2. FUNCTION P(z,z)

In this part we will investigate the function z — P(z,z), for positive values
of z.

Theorem 2. For every xz > 0:

—

¢ 1 2% %

©) 20(z 4+ 1)

+1mw')’ < P( )<1+
3T(x + 1) R

N —

Proof. By an appropriate change of variables and an integration by parts
in (1), it can be shown that

1
vt
P(u,v)=— e +1)/(%_mtu dt
0

If we define 0(z) by

‘,I:.T

P(x,z) = % + H(x)m

then we have
1 o)
_ T —\ —\
(10) 0(1)—1+5e /(te ) dt—/(te ) dt
0 1

It is shown in [6] that 6 of the form as in (10) decreases from $ to % as x increases
from 0 to +00; so the theorem is proved. =

As KARAMATA writes in [6], RAMANUJAN posed a problem [7]: Show that, if
x is a positive integer,

L et D 2 0
2« T T Dl T

1

where 0 lies between 5

of our Theorem 2.

and % In the light of (4), this problem is a particular case

Any of various normal approximations to the y? distribution function leads
to a conjecture that the median of 2 has to be between a — 1 and «, for large a.
Using Theorem 2, we can prove more than that.

Corollary. Let M, be the median of x2 random variable (o > 1). Then a — 1 <
My < a.

Proof. The distribution function for x2 is P (% %) By Theorem 2, P (%, %)
3
proved by noticing that for a > 1,

is greater than and therefore M, < a. The other half of the assertion can be
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5 a
aoy_pfaaezly_ 1 5 L 5(2)
P(2’2) P<2’ 2 >_r(%)/(’ ! dt>2r(%)“ (2) ’
1
2

a

where we used the fact that the function under the integral sign is decreasing within
the limits of integration. Further, by (9),

w3 <) -yt

Theorem 3.

(i) For every z >0, 8> 0,

(12) Wetbosh) (tHTT

v(z,z) zrt—1lef
(i1) The function x — P(x,z) is decreasing in x > 0.
Proof. (ii) is obviously equivalent to
T+ 0,0+ Iz +
(13) wetpoth) Lath (x> 0,8>0).

e )

KECKIC and VAsI¢ proved in [9]:

Ll +8) _ (w+p)70
I'(z) x%—1eh '

(14)

So, (ii) will follow after we prove (i). After an appropriate change of variables in
the integral, (12) becomes

x x

_ei8 P
(15) /e = A=l gy < T—ﬂ/e‘ftm‘ldt.
e

0 0

By a mean value theorem,

f — L2y 1 —Zec f t,w—1
(16) /e = qrt-lqr = P = /e_’tx_ dt, c€(0,z).
0 0
. 7&0 . .
The function ¢ — ¢®e” *° reaches its maximum z%e¢=? at ¢ = z; therefore, (16)

implies (15). =
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