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SOME RESULTS ON THE REDUCED
ENERGY OF GRAPHS, III

Mirko Lepovic

In a recent paper [10], A. Torgasev described all finite connected graphs whose
energy (i.e. the sum of all positive eigenvalues including also their multiplici-
ties), does not exceed 3. In this paper, we describe all connected graphs whose
reduced energy, i.e. the sum of absolute values of all eigenvalues except the
least and the largest ones, does not exceed 2.5.

In this paper we consider only finite connected graphs having no loops or
multiple edges. The vertex set of a graph G is denoted by V(G), and its order
(number of vertices) by |G|. The spectrum of such a graph is the family A > Xg >
-+ > Ay of eigenvalues of its 0-1 adjacency matrix, and we also write X\;(G) = \;,
(i =1,2,...,n). The eigenvalue A\1(G) = r(G) is called the spectral radius of G,
while the eigenvalue A, (G) is the least eigenvalue of G.

The sum of eigenvalues [A1] + [Xa] 4+ -+ -+ |[X,—1| is denoted by S1(G) and has
been investigated in [6]. All connected graphs with the property $1(G) < 6 has
been determined in [6].

Next, the sum of eigenvalues |Aa| + [Ag] + -+ 4+ |An—1] is denoted by T1(G)
and called the reduced energy of G. For any real a > 0, we can consider the class
of graphs

Ei(a)={G |Ti(G) <a}.

In this paper we completely describe the class E1(2.5).

Briefly, any graph G € E;1(2.5) is called admissible, and any other graph
impossible (or forbidden) for this class.

If H is any connected (induced) subgraph of a graph G, we write H C G.
Making use of the known interlacing theorem [1, p.19] we have T1(H) < Ty(G).
Whence, we have that any connected subgraph of an admissible graph is also ad-
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missible. This implies that the method of forbidden subgraphs can be consistently
applied.

Next, let Ky, ny.....n,.» Pn and C,, be the complete m-partite graph, the path
and the cycle with n vertices, respectively. Since the complete m-partite graph
Ky, no.....n,, has just one positive eigenvalue A1(G), it will belong to the class F1(a)
if and only if \1(G) 4+ A, (G) < a.

Since the graph K, , belongs to the class Fi(a) for every m,n € N we
conclude that class Fq(a) is infinite for every constant a > 0.

In order to generate all graphs from the class E1(2.5), we firstly determine
the complete set of the so-called canonical graphs in this class.

We say that two vertices z,y € V(G) are equivalent in G and denote it by
z ~ y if x is nonadjacent to y, and = and y have exactly the same neighbors in
G. Relation ~ is obviously an equivalence relation on the vertex set V(G). The
corresponding quotient graph is denoted by g, and called the canonical graph of G.
The last graph is also connected, and we obviously have ¢ C G. For instance, if
G = Ky my....m, (p > 2) is the complete p-partite graph, then its canonical graph
is the complete graph K,. The canonical graph of the complete graph K, is the
same graph K.

We say that G is canonical if |G| = |g|, thus if G has no two equivalent
vertices.

Let g be the canonical graph of G, |g| = k, and Ny,..., Ng be the corre-
sponding sets of equivalent vertices in G. Then we denote G = g(Ny,..., Ng), or
simply G = g(n1,...,nk), where |N;| =n; (i = 1,...,k), understanding that g is a
labelled graph. We call Ny, ..., Ni the characteristic sets of G. Obviously, each set
N; CV(G) (i=1,...,k) consists only of isolated vertices, and if at least one edge
between the sets N;, N; (i # j) is present, then all possible edges between these
sets are also present.

If ¢ is the canonical graph of a graph G, we have that ¢ C G whence we obtain
G € F1(a) = g € F1(a).

Hence, it is very convenient to describe firstly the set of all canonical graphs from
the set E1(a).

We note that many other hereditary problems in the spectral theory of graphs
can be reduced to finding firstly the corresponding sets of canonical graphs. In this
respect one can consult the papers [4], [7], [10] etc.

Creating the complete set of canonical graphs in this paper is based on the
following general theorem proved in [11], which can be very valuable for other
similar problems.

Theorem A. In all but a sequence of exceptional cases, each connected canonical
graph on n vertices (n > 3) contains an induced subgraph on n — 1 vertices, which
1s also connected and canonical. The mentioned exceptional cases are the graphs in
Fig. 1. (In graphs in Fig. 1 vertices y; and x; are adjacent whenever i < j).
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Fig. 1.

The above exceptional graphs satisfy the relations To C Ty C Ty C ---.
Now, we prove an important property of the general class Ei(a) (a > 0). It
is based on the Theorem B which is proved in [9].

Theorem B. For every n € N the complete set of canonical graphs which have
n nonzero eigenvalues is finite.

Theorem 1. For every constant a > 0 the set of canonical graphs from the class
E1(a) is finite.

Proof. On the contrary, assume that the set of canonical graphs from the
class F1(a) is infinite for some a > 0. Then, by Theorem B, for every real number
M > 0, there exists a graph G such that

(1) Aa| + [Asg] 4+ + [An=1] < a,

which has p > M nonzero eigenvalues. The multiplicity of zero of the graph G
is then ¢ = n — p. Assume that A; > A;41 = -+ = Ao g = 0 > Agyg11. The
corresponding characteristic polynomial of the graph G is then

Pa(A) = AT (WP + a7 - tap)),

where |ap| = A2 A+ [Asqqr1| - |Anl

In the sequel, without any loss of generality, we can assume that ¢ = 0, thus
n = p. Besides, we assume that n is chosen so large that we have v/n > [a] +5. We
have that |A1], [A,| < n — 1, while relation (1) gives |\;| < /n fori=2,3,...,n—1.

If ¢ = 1/4/n, let k be the total number of eigenvalues )\;, with |\;] < ¢
(i=2,3,...,n—1). It is easy to see that k > [a] + 3. Indeed, in the contrary case,
we would have that there exists at least (n — (k4 2)) eigenvalues A; (2 <i <n—1)
with [X;| > . Relation (1) now gives

n—1
n—(k+2) [a] +5
(2) [a] +1>a> Ni| > —— > Vn — ——.
YRR Lt
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Since v/n > [a] + 5, relation (2) yields [a] + 1 > /n — 1, what is a contradiction.

Next, let kg be the total number of all eigenvalues \; (i =2,3,...,n— 1) with
|A;| > 1. Relation (1) now yields

n—1 ko
[a] +1>a > N> 1=k
=2 i=1

Whence we get ko < [a].

Now we finally have

lanl = [AallA2l - Al = [Aalxal (IX2]As] - [An—1])

1 1 1
< (n—1)2 ey —— e — 1] i1 <
< (0= DIV e <
ko ‘lg—/ n—(k+ko+2)

what is a contradiction since |a,| € N (a,, # 0). Hence the set Eq(a) is finite for
every a > (. ®

By a direct inspection of spectra of all connected graphs with at most 5

vertices (see, for example, tables in [1]), we find that class £1(2.5) contains exactly
11 canonical graphs with at most 5 vertices. They are displayed in Fig. 2.

Fig. 2.

As is also known, there is exactly 112 nonisomorphic connected graphs with 6
vertices. By a direct inspection of their spectra (see, for example [3]), we find that
class F1(2.5) contains no canonical graphs with 6 vertices.

By Theorem A and Theorem 1 we immediately obtain the following result.

Theorem 2. Figure 2 displays all canonical graphs from the class E1(2.5).
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Proposition 1. A graph G = gi(m,n) € F1(2.5) (m < n) for all values of
parameters m,n.

Proof. Since g1 = K», graph G = K, is the complete bipartite graph,
hence it has exactly one positive and exactly one negative eigenvalue. Consequently,
T1(G) = 0 for every complete bipartite graph G. o

Proposition 2. A graph G = go(m,n, k) (m < n < k) belongs to the class E1(2.5)
if and only if
(m,n, k)= (1,1,1), (2,3,3), (2,4,4),

where p means that the corresponding parameter is greater or equal p, and p means

that the corresponding parameter is less or equal p.

Proof. Since go = K3, graph G is the complete 3-partite graph K, » %. It
has only three nonzero eigenvalues, which are the roots of the polynomial

P\ = P (mn +mk + nk)X — 2mnk.

Therefore G € E1(2.5) if and only if |A2| < 2.5, that is if and only if P(—2.5) >
0. Whence we easily find the statement. @

Proposition 3. A graph G = g3(m,n,k,1) (m <) belongs to the class E1(2.5)
if and only if (m,n,k,1) has one of the following values:

(1, 1, i,1), (1, 1, 1,1, @, 2 1,8),
(1, 2, 2,7), (1, 3, 2,4), (1, 3, 33)
(1, 4, 3,3), (1, 4, 4,2), (1, 5, 2,3),
(1, 7. 2,2), (1, 8,26,2), (1, 9,14,2),
(1,10, 10, 2), (1,11, 8,2), (1,12, 7,2),
(1,15, 6.2), (1,21, 5.2), (1,53, 4,2),
(1,54, 3,2), (2, 1, 1,5), (2, 1, 3,4),
2, 1, 4,3), (2, 2, 2,2).

Proof. It is easy to check that each of the above graphs belongs to the class
F1(2.5). Next, note that all eigenvalues of such a graph are determined by equation

P (mn 4+ nk + kl))\Q + mnkl = 0.

Hence, these eigenvalues can be explicitly found. Therefore, it is easy to prove
that G = gs(m,n, k,1) € E1(2.5) if and only if

256 mnkl — 400(mn + nk + ki) + 625 < 0.

Hence, we immediately get the statement. @

In a similar way, one can prove the next 8 propositions.
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Proposition 4.

and only if (m,n,k,1) has one of the following values:

A graph G = ga(m,n, k,1) (k <1) belongs to the class E1(2.5) if

(m,n,k, )= (1, 1,5, 1), (1, 1,6,30), (1, 1,7, 13),
(1, 1,8,10), (1, 1,9, 9), (1, 5,1, 1),
(1, 2,2 2, (1, 6,1,8), (1, 7 1 35),
(1, 81,25, (1, 91,21), (1,10,1,19),
( 1,11,1,17), ( 1,12,1,16), ( 1,14,1,15),
(1,17,1,14), ( 1,24,1,13), ( 1,43,1,12),
(1,44,1,11), (2, 1,1, 1), (2, 2,1, 8),
(2,5,1,9), (2 41,4, (3, 1,1, 6),
(3, 2,1, 3), (4, 2,1, 3), (10, 1,1, 2),
(11, 1,1, 2), (12, 1,1, 1).

Proposition 5. A graph G = gs(m,n, k,1) (m < n <k <1) belongs to the class
E1(2.5) if and only if

(m,n, k,1)=(1,1,2, 1)

Proposition 6. A graph G = gg(m,n,k,l,p) (m < p) belongs to the class E1(2.5)

if and only if (m,n,k,1,p) has one of the following values:

(1,1,1,1,1), (1,1,1,2,2), (1,1,1,1,2)
(17172777 1)7 (171737571)7 (17177>4>1)7
(1,1,8,3,1).

Proposition 7. A graph G = g7(m,n, k,1,p) (m < p) belongs to the class E1(2.5)
if and only if (m,n,k,1,p) has one of the following values:

(1,1,1,2,9), (1,1,1,3,4), (1,1,2,2,1),
(171737 17 1)7 (1727 17 172)7 (17271737 1)7
(1727271?1)7 (1?37 17271)7 (173?27 17 1)

Proposition 8. A graph G = gg(m,n,k,l,p) (m < n) belongs to the class F1(2.5)
if and only if (m,n,k,1,p) has one of the following values:

(1, 1,2,1,1), (1,1, 3,1,4), (1, 1,4,1,3),
(1, 1,5,1,2), (1,2, 1,1,4), (1, 2,2,1,2),
(1, 2,3,1,1), (1,3, 1,1,2), (1, 3,2,1,1),
(1, 4,1,1,1), (1,5,16,1,1), (1, 6,6,1,1),
(1, 7,4,1,1), (1,9, 3,1,1), (1,15,2,1,1),
(1,16,1,1,1), (2,2, 1,1,2), (2, 2,2,1,1),
(2,10,1,1,1), (3,5, 1,1,1).



88

Mirko Lepovié

Proposition 9. A graph G = gg(m,n,k,l,p) (k <1 < p) belongs to the class
E1(2.5) if and only if

(m,n, k,1,p) = (1,1,1,1,1).

Proposition 10. A graph G = gio(m,n,k,l,p) (k < p) belongs to the class
E1(2.5) if and only if

(m,n,k,0,p)=(1,2,1,1,1).

Proposition 11. A graph G = g11(m,n,k,l,p) (m < n) belongs to the class
E1(2.5) if and only if

10.

11.

(m,n,k,d,p)=(1,1,1,1,1).

Propositions 1-11 and Theorem 1 completely describe the class E1(2.5).
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