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GRAPH ANGLES AND
ISOSPECTRAL MOLECULES

Peter Rowlinson

Various constructions for cospectral graphs, used in the investigation of isospec-
tral molecules, are explained in terms of certain geometrical invariants of eu-
tactic stars associated with a graph.

1. INTRODUCTION

This note is prompted by a recent paper in theoretical chemistry [6], where
various rules for the construction of cospectral graphs are justified by means of
second-order approximations in perturbation theory. The context is the represen-
tation of certain molecules by finite undirected graphs (without loops or multiple
edges): vertices represent atoms, and edges represent bonds between atoms. For de-
tails the reader is referred to [7]. Suffice it to say here that, according to HUCKEL’s
theory of molecular orbitals, the energy levels of a generalized wave function asso-
ciated with a hydrocarbon molecule are determined by the eigenvalues of a (0, 1)-
adjacency matrix of an underlying graph. Such a matrix is regarded as a matrix
with real entries, and two graphs are said to be cospectral if they have adjacency
matrices with the same spectrum; if the two graphs are non-isomorphic then the
corresponding molecules are said to be isospectral.

The construction of cospectral graphs has been investigated not only in the
context of perturbations of eigenvectors of an adjacency matrix [5], [6] but also in
the context of self-returning walks [8], [13]. Further, various formulae of HEILBRON-
NER [4] and others [9], [12] may be used to construct cospectral graphs from a graph
G which has distinct vertices u, v such that the graphs G — u, G — v are cospectral.
(Here G — u is obtained from G by deleting vertex v and all edges containing u.)
In this situation, v and v are said to be cospectral vertices (or isospectral points
[6]): this concept was introduced in [9], while a first characterization of cospectral
vertices in terms of eigenvectors appears in [5].
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The main purpose of this paper is to substantiate the claim that the notion
central to all of the above themes is that of graph angles. The angles most commonly
considered are those between coordinate axes and the eigenspaces of an adjacency
matrix of a graph. If the n-vertex graph G has an adjacency matrix A with dis-
tinct eigenvalues g1, ..., m, and if e, ..., e, comprise the standard orthonormal
basis of R” then we write Bi; for the angle (O < Bi; < %) between e; and the
eigenspace E(u;). (Note that since similar matrices are cospectral, the eigenvalues
of A are independent of the ordering of the vertices of the graph.) In the literature
the numbers a;; = cos 3;; are customarily referred to as the angles of G, abusing
terminology. Note that a;; = |P;e;|, where P; represents the orthogonal projection
onto & ().

The connection between angles and perturbations is explained in [10]. The
connection between graph angles and eigenvectors is immediate since Pie; € & (p;).
A characterization of cospectral vertices in terms of the vectors P;e; is given in
Proposition 2.2.

The connection between graph angles and self-returning walks is clear from

the spectral decomposition A% = % /J,fPi (k > 0) since on equating (4, j)-entries
i=1
we see that the number N;m of walks of length k& beginning and ending at the j-th
vertex is inl afj//,f. (This appears in [2, Section 5] where it is also noted that in the
i=
HUCKEL theory, Z{a?j: i > O} is essentially the probability of finding an electron

at the j-th atom of the corresponding molecule.) Given pq,..., pm, knowledge of
the angles a;; (i = 1,...,m; j = 1,...,n) is equivalent to knowledge of the numbers
N (=10 keN).

Here we use graph angles independently of perturbations to establish with
minimal effort the rules for the construction of cospectral graphs and isospectral
molecules discussed in [6]. Some of the rules were propounded earlier [1], [5],
[14], and some of the proofs are implicit in previous papers on the characteristic
polynomial of a graph (that is, det (zI — A) in the notation above): see [2] and
references therein. One new result here relates to the construction of cospectral
graphs from a graph with so-called isospectral pairs of vertices, defined as follows.
Let u, v be non-adjacent vertices of a graph G, and let G (u, v) be the graph obtained
from G by adding a new vertex w of degree 2 adjacent to u and v. The vertex w
is called a bridging vertez; and the pairs {u,v}, {u’, v’} of non-adjacent vertices
are called isospectral if the graphs G (u,v), G(u’,v") are cospectral. Equation (2.5)
below provides a formula for the characteristic polynomial of a graph modified by
the addition of a bridging vertex.

For explicit examples of the constructions described in Section 2 the reader is
referred to [6]. As in that paper the question of isomorphism of cospectral graphs
is not considered in this note.
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2. CHARACTERISTIC POLYNOMIALS

We first describe a well-known means of constructing cospectral graphs from
a graph with cospectral vertices. The characteristic polynomial of a graph G is
denoted by ¢g(z).

Proposition 2.1. Let H, K be graphs and let w be a fized vertex of K. For any
vertex w of H, let G¥ be the graph obtained from H U K by identifying u and w. If
w, v are cospectral vertices of H then the graphs G%, GV are cospectral.

Proof. The graph G is the union of two graphs which have just one vertex
in common. Accordingly, by [12, Corollary 2b], the characteristic polynomial of G*
is

dr—u(2)pr(2) + o (u)dr—w(®) — 2o H—u(2)P K —w(2).

Thus if ¢ (z) = ¢g—y(z) then G¥, GV are cospectral. @

The relation between vertex-deleted subgraphs and angles was established
in [3] by expressing in two ways a diagonal entry of the matrix generating func-

oo
tion x %A% Here A is the adjacency matrix of a graph G whose vertices are

E=0
labelled 1,2,...,n. In the notation of Section 1, the (j,j)-entry of > #7FA* is
o] m. m. a2 k=0
kzox_k ‘210{%“5’ or Elﬁ when = > max{|u1],....|tm|}. On the other
= 1= 1=
hand, S 2 %A% = (I — 271 A)~! with (j, j)-entry ”;f;;(;(f), and it follows that
k=0
m az.
?
(2.1) bai(x) = da(z) Y ﬁ
2

i=1
Consequently we have the following characterization of cospectral vertices.

Proposition 2.2. Vertices u, v of a graph are cospectral if and only if the angles
at u coincide with the angles at v, that is, aiy = iy (i =1,...,m).

If u; is a simple eigenvalue then to within sign ay, is the u-th entry of a
unit vector which spans &(p;): hence the remark in [5, p.101] that cospectral
vertices “must have identical absolute values of eigenvectors in every non-degenerate

eigenlevel”. In the general case, let x1,...,xg comprise an orthonormal basis for
E(ui), say xg = (v1k, Tok, - - - ,mnk)T (k=1,2,...,d). Then P; = x;X1 +-- ~+xdx3
and so a?j = x?l + -+ m?d: hence the remark in [6, p.25] that “the sum-over-

degenerate-eigenvalues of squares of coefficients at isospectral points must be equal”.
The next result concerns the construction in [6] of a family of graphs with
cospectral vertices from a given graph H with cospectral vertices u, v. A third
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vertex t of H is said to be an unrestricted substitution vertexr with respect to u, v
if for any graph K, the vertices u, v remain cospectral in the graph obtained from
H U K by identifying ¢ with a vertex of K.

Proposition 2.3. Letu, v be cospectral vertices of the graph H and let t be a third
vertex of H. Then t is an unrestricted substitution vertex with respect to u, v if and
only if u, v are cospectral vertices of H — t.

Proof. Let G be the graph obtained from H U K by identifying ¢ with
a vertex w of K. By [12, Corollary 2b] we have ¢g_y(z) = ¢p_t—u(z)or(z) +
b ()P w(r) — 2dmg_+ o(v)dr_w(z), together with a similar expression for
dG—v(z). Since pg_o, () = ¢r—y(z), it follows that u, v are cospectral in G if and
only if

(2.2) (br—t—u(z) = ba—t—v(@)) (pK(z) — 20K _w(z)) = 0.

Hence ¢g_y(x) = dg—v(x) for all choices of K if and only if ¢y (z) =
¢H7tfv(-77)- o

Remark. It follows from Equation (2.2) that if ¢g_n(z) = ¢g_o(z) for just
one choice of K in which w is not isolated then ¢ is an unrestricted substitution
vertex; for if ¢ g (2) = v gr_y(x) then w is an isolated vertex. To see this we apply
Proposition 2.1 to K: taking u; = 0 we have a1, = 1 and ayyy, = 0 (i > 1), whence
ey = Piey, € E(py) and Ae, = 0. B

We now turn our attention to the characterization of isospectral pairs of ver-
tices. First note that the introduction of a bridging vertex between non-adjacent
vertices u, v of a graph G is equivalent to adding the edge uv and then subdividing
uv. A formula for the characteristic polynomial of a graph with a subdivided edge
is derived from a deletion-contraction algorithm in [9, Proposition 1.7]. If we apply
this to the graph G + uv we obtain

(2.3) dcua) (@) = daruw () + (2 = 1)og(x) = da—u(®) = pG—0v(T) + PG_u_s(z).

Now [10, Equation (6)] provides an expression for ¢y (z) involving further an-

[

gles associated with a graph, namely the angles cos !4y between Pje, and Pje,
(defined when P;e,, P;e, are non-zero). For our purposes, we write this expression
in the form

(2.4) b () = dc(z) {1 2} ﬂ} b v(2).

- T
Thus is proved in [10] by first expressing in two ways the (u, v)-entry of the matrix
generating function Y #7¥A¥ (cf. the derivation of Equation (2.1)). If we eliminate

E=0
AGrun () + ¢G—u—v(x) from Equations (2.3) and (2.4) we obtain
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i Pi u'Pi v
66wy () = da(x) {m 23" H} — ba—ulr) — pau(z).

Tr — g
i=1 Hi

If we now express ¢a—u(7) and ¢pg—y(z) in the form of Equation (2.1), we obtain

i Pi, uw+ Pi, v 2
(2.5) bGuw) (@) = 2o (r) — dalx) Y [Piew & Pies|”

T — s
P Hi

This yields the following “absolute value sum rule for isospectral pairs” conjectured
in [1] and justified in [6] by means of second-order approximations in perturbation
theory.

Proposition 2.4. Let {u,v}, {u/,v'} be pairs of non-adjacent vertices in the graph
G. Then {u,v}, {u',v"} are isospectral pairs in G if and only if

|Pieu+PieU\ = ‘P{eu/ +P¢ev/| (72 1,2,..‘,7”).

3. REMARKS

Let V be an inner product space, U a subspace of V. A eutactic star in U is
defined in [15] essentially as the orthogonal projection onto U of an orthonormal
set of vectors in V. Thus in the notation of the previous sections, for each i €
{1,2,...,m} the vectors Pjeq, ..., P;e, comprise a eutactic star S; in E(u;). The
angles o,;; (j = 1,...,n) are the lengths of the vectors (or arms) of S;, while

[4]

1[4 . . . .
cos™ 1 ~Yuu 1s the angle between the arms P;e, and P;e,. Thus the invariants which
determine cospectrality in the various constructions discussed in Section 2 are just
invariants of the geometries of the eutactic stars Sy, ..., Sm-
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