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ON SOME CLASSES
OF LINEAR EQUATIONS, VI

Jovan D. Keckié

We consider the equation (1) where P is a polynomial and A an algebraic linear
operator on a linear space. The general solution of (1) is obtained under the
conditions specified in Theorem 1 or Theorem 2. The theory of generalized
inverses, when applied to the equation (1), does not lead to a better result.

1. Suppose that V is a linear space over C and that A:V — V is a linear operator.
Once again we consider the equation in z € V:

(1) P(A)x =0

where P is a given complex polynomial.

In previous notes [1]-[3] we constructed the general solution of (1) assuming
that V' is a commutative algebra and by introducing some other restrictions on the
operator A, mainly regarding the action of A on the product wv (u,v € V).

In this note we shall construct the general solution of (1), provided that A is
an algebraic operator (i.e. provided that there exists an annihilating polynomial for
A). In other words, we suppose that there exists the minimal polynomial M of A,
for which we have, of course,

(2) M(A) = 0.

It is then sufficient to consider the equation (1) where dg P < dgM = m.

2.  We shall determine the general solution of (1) provided that the zeros of P and
M have some special properties which will be specified later.

Namely, let D be the greatest common divisor of the polynomials P and M,
and let

(3) M(t) = D(@)F(t), P(t) = D()G(t).
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(4) x=F(A)u (u € V is arbitrary)
clearly satisfies the equation (1), since from (4) follows
P(A)x = P(A)F(A)u,
and in virtue of (3):
P(A)x = D(A)G(A)F(A)u = G(A)D(A)F(A)u = G(A)M (A)u = 0.

However, the solution (4), though it contains an arbitrary element u € V', need not
be the general solution of (1).

Example 1. Counsider the matrix equation

(5) Az =0,
where
11 2 1 1
112 R
A=10 0 0 of T |
00 00 4

In this case M (t) = t3 — 2%, P(t) =t, D(t) =t, F(t) = t> — 2t, and
(6) x= (A% —2A)u

where u is an arbitrary 4 x 1 matrix is a solution of (5), but it is not its general

solution. Indeed, the solution =z = ||1 2 -1 -1 ||T cannot be obtained from (6).

Hence, some other restriction is needed to ensure that (4) is the general so-
lution of (1). In fact, it is enough to suppose that the polynomials F and P are
relatively prime. Indeed, in that case there exist polynomials S and @ such that
F#)S(t)+ Q(t)P(t) = 1, implying

(7) F(A)S(A) + Q(A)P(A) = 1.

Therefore, if zg is a solution of (1), i.e. if P(A)zg = 0, then from (7) follows:
F(A)S(A)II?O -+ Q(A)P(A)xo = xg, i.e.

(8) F(A)S(A)zo = zo.
This means that if z¢ is a solution of (1), then there exists a polynomial S such

that (8) is true. Hence, putting u = S(A)zg into (4), we find that (4) reduces to
¥ = mp; in other words, any solution zg of (1) is contained in the formula (4).

We have therefore proved the following theorem.
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Theorem 1. If D is the greatest common divisor of P and M, with M (t) =
D(t)F(t), and if F and P are relatively prime, then (4) is the general solution of

(1).

Remark. The conditions: F' and P are relatively prime, and F and D are rela-
tively prime, are clearly equivalent to each other.

Suppose now that A1,..., A, are the only common (and distinct) zeros of P
and M, and put

(9) M) = (1= \)™ o (= A F (1), P) = (£ M) o (£ — AP R(),
where F(A) #0, R(Ag) #0for k=1,...,r. If
(10) mp < pg (k=1,...,7)

then
D(t) = (t = A)™ oo (t — Ap)™r

and the polynomials F' and P (or equivalently F' and D) are relatively prime. The
converse is also true. Theorem 1 can therefore be reformulated in the following
manner.

Theorem 2. If \1,..., A\, are the only common and distinct zeros of P and M,
such that (9) and (10) hold, then the general solution of (1) is given by (4).

Corollary. If all the zeros of M are simple, then the condition (10) is fulfilled.

Example 2. Suppose that M (t) = t™ — ¢ (m > n are nonnegative integers)
is the minimal polynomial of A. If n > 1, the general solution of the equation
P(A)z = 0 can be obtained provided that: either 0 is not a zero of P, or 0 is a zero
of order > n of P. In particular, if n = 1, then it is always possible to solve the
equation P(A)z = 0.

Similarly, if n = 0, it is also always possible to solve the equation P(A)x = 0.
As an illustration we mention the cyclic functional equation

(11) am,lm(gm_lt) + am,gm(gm_zt) + -+ arz(gt) + apx(t) = 0,

where g maps a nonempty set S into itself, g™t =1t (¢t € S); ag, ..., am_1 are given
complex numbers, and the unknown function x maps S into C.

The equation (11) has the form (1) with P(t) = ap_1t™ 1 4+ --- + ag, and
Az(t) =: z(gt). Suppose that " — 1 = D(t)F(t) where D is the g.c.d. of t" — 1
and P(t). Then the general solution of (11) is given by x(t) = F(A)u(t), where
u: S — C is arbitrary.

This result is well known (see, for example [4], or [5] where it was proved in
a manner similar to the proof of Theorem 1).
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Remark. We have seen (Example 1) that (4) need not be the general solution of
(1) if F and P are not relatively prime (or equivalently if (10) does not hold). On
the other hand, those conditions are not necessary for the validity of the conclusions
of Theorems 1 and 2, as shown by the following example.

Example 3. Consider the equation Az = 0, where

2 1 —1 T1
A=|0 2 0], T = |72
4 —4 -2 3

We then have M (t) = t3 —2t?, P(t) =t, D(t) = t, F/(t) = t> — 2t. The polynomials
F and P are not relatively prime, but nevertheless the solution

r=F(A)u= (A2 —2A)u,

where u is an arbitrary 3x 1 matrix is the general solution of the considered equation.

It should be noted that M and P from this example coincide with M and P
from Example 1, but the respective conclusions do not.

3. It seems appropriate to investigate the equation (1) from the aspect of gen-
eralized inverses. Of course, the equation (1) is linear and its general solution is
simply
z=(I—-A7A)u (u € V arbitrary)

where A7 is a (1)-inverse of A1 = P(A). This is certainly true, but useless. We shall
therefore attempt to express the general solution of (1) in terms of a generalized
inverse of A. It turns out that the DRAZIN inverse (although considered not to
be an “equation solver”—see [6]) is the suitable inverse for this problem. We first
briefly list a definition and some simple facts which will be needed later (for details
consult [6]), and we then describe a method for solving (1).

If M(t) =t™ F o1t 4 apt? with oy # 0 is the minimal polynomial
for A, we say that k is the index of A, and we write k = Ind A.

Suppose that k¥ = Ind A. Then the following statements are true.

(i) The equation Az = 0 is equivalent to the equation A"z = 0 for all n > k.
(i) If AP is the DRAZIN inverse of A, then (AD)IC is a (1)-inverse of A*.
(iii) APA = (AP)" A", where n € N.
As a consequence of the above, we conclude that

(iv) The general solution of the equation A*z = 0 isax = (I — AP A)u, whereu € V
is arbitrary.

The following result, proved in [7], will also be used later.

(v) If A and B are linear operators on V, such that AB = BA, A”B = BA™,
where A~ denotes a (1)-inverse of A, then
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ker AB = ker A + ker B.

Finally, we shall need the following fact:

(vi) If M is the minimal polynomial of A, then the minimal polynomial of A — X\
is:
" MO M ()4 M (),

and also its consequence:

(vii) For any nonnegative integer k the following two statements are equivalent:
(a) k=Ind(A— \I);
(b) X is a zero of order k of M.
(We say that X is a zero of order 0 of M if M (\) # 0).

We now return to the equation (1), where A satisfies (2). Let P(t) = (t—A1)™
<o+ (t = Ap)Pm, so that (1) can be written in the form

(12) (A= I)Pr (A= X, 1)z = 0.

Let A be a zero of order my of M, and suppose that
(13) my < pE (k=1,...,n).

Then using (vii) and (i) we see that (12) is equivalent to the equation
(14) (A=X D)™ (A= XpI)"mz = 0.

Consider now the equation
(15) (A=A l)™ 2 =0 (1<k<n).
According to (iv) its general solution is

x=u— (A= I)P(A = NI,

where u € V is arbitrary. Hence, we can explicitely solve any equation of the
form (15). But for all k¥ = 1,...,n the operators (A — AxI)™* commute, and
also the operator (A — AiI)™* commutes with a (1)-inverse of (A — X\;1)™ for all
k,j=1,...,n. This follows from (i) and the fact that A” is a polynomial in A.
Therefore, according to (v) we conclude that the general solution of (14) is the sum
of the general solutions of the equations (15) for k = 1,...,n.

In other words, it is possible to solve the equation (1) by this method provided
that the condition (13) is fulfilled. The same result was also obtained in Section
2. However, the method of Section 2 also enables us to write down the general
solution of (1) in a simple explicit form, and it is therefore preferable to the method
of generalized inverses.
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