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SYMMETRIC DERIVATIVES AND CONVEXITY
CLASSES OF OVCARENKO

Ljubisa M. Kocic

The concept of v—derivative of real functions is used to study three classes of
the Ovéarenko convexity [4]. The relationship of v—derivative to the Ové&arenko
classes is the same as the relationship of the second symmetric (Schwarz) deriva-
tive to the class of the ordinary convexity. In this way, some theorems of Natanson
[3] on behaviour of the second symmetric derivative and derivative numbers are
generalized.

0. INTRODUCTION

In [4], I. E. OVCARENKO introduces the following concept of convexity of real
functions.

Definition 1. Let, forp € R, v(z) =z + %x‘s +o(z3). Then, we call f v—convex on
la, b] if for every x, x1, x9 such that a < z1 < x < z9 < b, we can find § > 0 such
that for xo — x1 < 6, the inequality

(1) v(ze — ) f(z1) +o(zr — 22)f () + v — 21)f(z2) 2 0
holds.
It is easy to show that for p < 0 and § < &£ (r € R), v—convexity reduces on

the convexity with respect to the CHEBYSHEV system {cosrz, sinrz}, for p = 0 we
have ordinary convexity, i.e. convexity with respect to {1, «}, while for p > 0, f
is convex with respect to another CHEBYSHEV system {coshrz, sinhrz}. Thus, the
class V (v) of v—convex functions is the union of three classes: V (sinrz) — the class of
trigonometric convexity, V (z) — the class of ordinary convexity and V (sinhra) — the
class of hyperbolic convexity. Also, V (v) can be considered as a special case of sub—F
convexity ([1]). Namely, every f € V(v) can be majorized by

(2) Lia(z) = L(z1, xo; v; x) = Mf(ﬁ) + Mf(@),
v(zg — 21) v(rg — 21)
i.e. we have
f(z) < L(zq, 225 v; 2), z € [xq, x3].
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In other words, L2 are limit functions of the convex cone V(v). It is known that
such functions can be derived as the solution of the second order initial value problem
42

da?

L(z1) = f(z1), L(z2) = f(z2).

< L(w) - 2pL(z) = 0,
(3)

Note that, for p = 0, L 2(z) is a straight line through the points (z1, f(z1)),
(z2, f(x2)), while, for p < 0 we need the restriction zg — z; < .

1. DERIVATIVES

It is known [6] that even the ordinary convex function may not have second
derivative everywhere in its domain of convexity. According to PEIXOTO [5] things
are not much better when we consider sub—F classes of convexity. So, we find it will
make sense to study relationship of the OVCARENKO class, V (v) with a more general
type of derivatives like symmetric ones.

In this sense, let us recall

(4) M) = lim

" . fle+h)=2f(x)+ f(x —h)
(5) (@) = lim 2

where we assume the existence of the limits above. In [3] NATASON studied a rela-
tionship between f! and the class of convex functions. Here are some generalizations
to the classes v(sinrz) and V (sinhrz).

Lemma 1. Let f:[a, b — R be v—convex on [a, b]. Then fNz) exists for any
z € (a, b).

Proof. According to ([4], p. 107), the one-sided derivatives f’ (z) and f (z)
exist for any = € (a, b). On the other hand, by (4)

ie. fUl(z) exists. o

Definition 2. Let v(z) =z + ’%:1:3 + o(z3), and let us suppose that

lim % [f(z 4+ h)—20"(R)f(x)+ f(z — h)],
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exists. Then, we call this limit the v—derivative of f in x and denote it f[”] (x) or

flo®] (z).

Lemma 2. The derivative fI")(z) exists if and only if fUN(x) exists. In this case
(6) ) = () = 2pf (o).
Proof. Let f/l(x) exist. Then, fV)(z) = lim #[f(x +h) = 2f(2)+

f(z —h)] = lim (f(”“" th) = 20'(h)f () + flz = h) | o0'(h) = 1f(x)>. By the defi-

h—0 h? h
nition of function v, we have v’(h) = 1 + ph? + o(h?), which gives

lim, — (o'(h) — 1) /() = 20f (),

h—0 h

i.e. (6) follows. On the other hand, let f[*! exist. Then,

FUe) = Jim = 7o+ ) = 20/ (W) (o) + £ = b))

wherefrom we get (6). @
Now, we are ready to prove

Theorem 1. Let f be defined and continuous on [a, b]. If fI'N(x) = 0, for every
z € (a, b), then

(7) f(xz) = Asinrz + Bcosra, for p< 0 and b—a<z,
T

(8) f(z) = Az + B, for p=0,

(9) f(xz) = Asinhrz + Bcoshrz, for p> 0.

Proof. The proof is known for p = 0 ([3]). We shell carry out the proof for
p < 0and when b—a < % The proof for p > 0 is quite similar. In this sense, consider
for e > 0 the function F given by

(10) F(z) = f(z) +eg(w),

where .
cos 5(2z —a —b)

gle) =1~ cos 5(b —a)

It is easy to see that F(a) = L(a), F(b) = L(b), where L(x) = L(a, b; sinrt; x), and
(11) plmrtpy = o2, z € [a, b].

Let us prove that the inequality

(12) F(z) < L(z)
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holds everywhere on [a, b]. If we suppose that F(z) > L(x) on [a, b] then there exist
the point z¢ € (a, b) such that for h > 0, a < 29 — h < x¢g + h < b we have

F(zog+h)—2cosrhF (zg) + F(zg — h) < 0.
Dividing both sides by h, and letting h — 0, we get FF™ " (z4) < 0, which contra-

dicts (11) because, against the supposition, ¢ > 0. Thus, zg does not exist and then,
(12) is true. From (12) and (10) we have

f(z)— L(z) < —eg(x), z € [a, b,

sin’ C(b —a)
which, in virtue of m < g(z) <0, z € [a, b] | m = —274— , makes
cos E(b —a)

(13) f(@) = L(z) <elg(x)].
Now, consider the function G defined by
(14) G(z) = f(x) —eg(x),

with the same g(z). By (14) and g(a) = g(b) = 0 we have G(a) = L(a), G(b) = L(b).
Also, by g™ (2) = +2 and our presumption fF™"(z) =0, we get

(15) Gbnrtl(p) = o2,

In the similar manner as above, one can prove

(16) G(z) > L(z), z € [a, b],
which, together with (14), gives

(17) flz) = L(z) = g(z) = —¢lg(2)].

On the basis of (13) and (17) we get |f(z) — L(z)| < e|g(z)], which, if we keep in
mind that e is arbitrary, gives f(xz) = L(X), i.e. (7) holds.

As we have already noted, for p > 0 the proof is similar. Instead of (10), we
need

(18) F(z) = f(z) — L(z) — eg(a), (e > 0),
where L(z) = L(a, b; sinhrt; ) is given by (2), while

cosh %(29@ —a—"b)
cosh 5 (b — a)

(19) g(x) =1~
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Here, we first prove that F(z) < 0. Then, G(z) = —f(z) + L(z) — eg(z), so

f(z) = L(z)| < eg(z), = €(qab),

which, due to arbitrariness of e, gives (9). @

2. CRITERIA OF v—CONVEXITY

It is clear that

(20) () = 20 (2) 2 0,

is a criterion for v—convexity for any f € C?[a, b] i.e. (20) is necessary and sufficient
for f to be v—convex. What is the criterion if f is not twice differentiable? To answer
this question we will define v—derivative numbers.

Let R* =R U {-00} U {400}.

Definition 3. We call q(v; f)(z) € R* a v—derivative number of the function f
in the point x, if there exists a sequence (hy)(n € N) such that hy, # 0 (n € N),
lim h, =0, so that

n—oo

(21) q(v; f)(z) = MH-%Lﬂ$+4m)—2v%mﬂf@)+f@*—hML

n—oo h

where v is as in Definition 1.

Note that, for v(z) = =, q(v; f) reduces to the second derivative number [3].

Theorem 2. If the function f is defined on [a, b], then, for every x € [a, b] the
numbers q(v; f) exist.

Proof. Let zo € [a, b] and (hy,)(n € N) be a zero—sequence such that, for
every n € N, zg + hy, € [a, b]. Set

1
tn:EgU@0+MJ—2U@Hf@®+f@O—va neN.

If (t,) is bounded sequence, then, on the basis of BOLZANO-WEIERSTRASS theorem,
we can select a subsequence (t,, ) which converges to the limit g(v; f)(x). If (¢,) is
unbounded from below (from above) then we can select a subsequence (t,,) which
diverges to +o00 (or —oo), thus, q(v; f)(z) = +o0 (—o0). &

Theorem 3. Let f be defined on [a, b]. Then, V() exists if and only if all v-
derivative numbers q(v; f) are equal.

Proof. If fl"l(z) exists, then, obviously, all q(v; f) are equal. On the other
hand, if ¢(v; f)(x) = qo, then, for every nontrivial zero-sequence (h,,), by (21)

(22) lim i2 [f(z + hy) — 20" (hy) f(z) + f(z — hp)] = qo.

n—oo
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Let us suppose that (22) is not true, i.e. that for at least one nontrivial zero—sequence
(hn), the sequence (s,,) given by

on = = £+ ha) = 20 () (@) + 7 (& = )],

n

does not converge to qg. Let, —0o < qp < +00. Then, ¢ > 0 exists so that infinitely
many numbers s,, lie outside the interval (g0 —e, go+¢). From this set, a subsequence
(sn,) can be selected so that (s, ) converges towards s € R*. This limit value, s, is
exactly a v—derivative number of f in the point x and differs from ¢g, which is again
a contradiction. @

The following theorem gives a criterion for v—convexity.
Theorem 4. f is v—convez in [a, b] if and only if all q(v; f)(z) are equal for all
z € [a, b].

Proof. Suppose f € K(v). Then, for any zero—sequence (hy,) (n € N), we have

fla+hn) = 20" (hn) f(x) + fz = hn) >0,

so q(v; f) are nonnegative, which establishes the necessity of the condition.

To prove that the condition is sufficient, we shall regard three classes separately.
For v(z) = x we can find the proof in ([3], p. 282). Let v(z) = sinrz. Consider the
function F given by (10). The condition of the theorem, together with gl¥#7t () = 72
gives ¢(sinrt; F) > er? > 0. In the proof of Theorem 1 it is shown that F(z) < L(z),
ie. f(z) < L(xz) —eg(x), with g as in this proof. When ¢ — 0,4, we have

f(&) < L) = L{a, b; sinrt; 2)
ie. f € K(sinrt). In the case v(xz) = sinhrz, we shall define F as in (18) and g(z)
with (19). Now, ¢(sinhrz; F) > er?, so we have F(z) < 0 by the similar argument

as in trigonometric case. Therefore, f(z) < L(z) + eg(x) and letting ¢ — 04 we get
f(z) < L(a, b; sinhrt; z), i.e. f € K(sinhrz). @
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