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738. ON THE BEHAVIOUR OF SEQUENCES OF LEFT AND
RIGHT DERIVATIVES OF A CONVERGENT SEQUENCE
OF CONVEX FUNCTIONS*

Ivan B. Lackovi¢

Supposing that a sequence of convex functions converges pointwise in an interval
I to a finite function, we have, in this paper, considered the convergence of left
and right derivatives. It is shown that convexity is sufficient to ensure a relati-
vely good behaviour of the sequences of derivatives in the interior points, as well
as in the boundary points of the considered domain. It is also shown that this
convergence point by point can be, in theorems of this sort, replaced by weaker
assumptions.

1. It is well known that if a sequence f,(n&N) of real functions converges
point by point to a real function f, then the sequence of derivatives f,’ (n&N)
need not converge to f’. Simple examples of such sequences are readily con-
structed. On the other hand, it is well known that rather strong conditions
have to be imposed to ensure that f,— f(n— + o) implies f,'— f'.

Besides the standard condition of uniform convergence, other conditions
which ensure the validity of the mentioned implication are also known. A
class of sequences which allows the above implication is the class of sequen-
ces f,(nEN), where each function f, is convex on a certain domain.

In this paper we shall investigate the behaviour of the sequences of
derivatives of convergent sequences of convex functions. Some results of that
sort, as it will be shown later, are known in literature, so that in this paper
we will start from those known facts and we will give some generalizations,
additions and comments in connection with the problem in consideration.

In the present paper, by I we will denote one of the intervals
[a, B] (— 0 <a<b< + ), (@, b) (—o<a<h=s + ), [a, +©) or (— o, 4],

where — oo <a<<+ 0.

For a function f:I— R it is said that it is convex on I if f(rx+
+(1-t)y=tf(x)+(1—1) f(p) holds true for all x, y&I and all t&(0, 1). If
for all x, y&I(x#y) and all t&(0, 1) the inequality f(rx+(1—1)y)<tf(x)+
+(1—1) f(») holds then for the function f we shall say that it is strictly
convex on I. As it is well known a function f which is convex or strictly
convex possesses many of the ,,good‘ properties on I

Therefrom it follows that the sequences of functions, convex (or strictly
convex) on the same domain I, have also ,,good* properties which sequences
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of arbitrary functions need not possess. If in addition to the convexity of zll
considered functions of a sequencs, we considar scquences which have some
other properties (for example the propery of bound:dness, convergence, mo-
notony etc.) then we obtain classes of sequencss of much wealthizr structures.

A theorems of such nature was proved by MASATSUGU Tsui in [1]. His
theorem reads:

Theorem 1.1. Let f and f,(nEN) be convex functions of the variable x&[a, B,
such that we have lim f,(x)=f(x) for all x&[a, b]. Suppose that at some po-

n—»+ oo
nt x,E (a, b) there exist the derivatives f' and f,’ for all n&EN. Then we have
lim £, () =1~ (%,)-
n—>+
The well known fact is, that if £ is a convex function on I, then there
exists the derivative f’ on I excepting possibly on a countable set.

For a given sequence, where all the functions are defined on the same
domain I, let us denote by G,(n<N) those subsets of I in which the func-
tions f, respzctively do not have the first order derivative. If those functions
f,(nEN) are convex on I and if the functions f defined by f(x)= lim f, (x)

n—»4 o

is finite on I, then the function f is also convex on I. Let us denote by G,

the subset of I in which the function f does not have the first order deriva-
+oo
tive. Under the above suppositions the sct G=_J G, is at most countable set.
k=0
For the above reasons and by using the above notations, theoram 1.1.
can be formulated in the following way:

Theorem 1.2. If the sequence f,(n&EN) of comvex functions converges point by
point everywhere in I to the finite function f, then we have lim f, (x)=f"(x)
n—>+

for all xcI\G.

Such formulation of the theorem 1.1. can be found in the monograph
[2] p- 21. Let us point out that in a particular case the above set G can be
void.

2. In this part of the present paper we will give a generalization of the above
theorems as well as a few observations which, as it seems to us, describe
completely the behaviour of the sequence of derivatives of a convergent se-
quence of convex functions. This generalization is based on the fact that if
f is a convex function on I then there exist the left and right derivatives of
the function f everywhere in the interval I, where the right derivative of f
exists also at the l.ft end point of I, if this point belongs to I, and analo-
gously left derivative of f exists at the right end point of I if this point be-
longs to I. Those derivatives can be respectively + o0 or — oo at those end
points. In such a way we can say that ths left and right derivatives exist in
the extended sense.

If f,(nEN) is a given sequence of convex functions, then bu f,, and
by fn— we will denote the right and the left derivative of f, respectively. In
a similar way by f. and f_ we will denote the right and left derivatives of
the function f. By using those notations we will prove the following statem.nt.
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Lemma 2.1. There exists a sequence f,(n<IN) of functions, defined on [—1, 1},
which satisfies the following conditions:

(a) all the functions of the sequence f,(nEN) are comvex on [—1, 1],

(b) the sequence f,(n&=N) converges uniformly in [—1,1] to the finite
(convex) function f,
and this sequence satisfies one of the following conditions:

(c) the sequence f,. (0) of right derivatives (or the sequence f,_ (0) of left
derivatives) is convergent, but the limit value of that sequence is different from
f% (0) (or different from f_ (0)),

(d) the sequence f,i (0)(nEN) (i. e. the sequence f,_ (0)) is not con-
vergent.

Proof. To prove the above statement it is sufficient to consider two se-
quences u,(n<N) and v,(nEN) of functions difined on [~1, 1] in the fol-
lowing way

,sz_l__], leéi .Lx..’__l_, xe[__l,_l_]
2 2n n 2 2n 3n n
u, ()= L v, (x)= ) .
x|, | x|>— %], xe[—l, —-]u[—, 1]
n 3n n
for all n&N.

(a) It can b~ directly verified that all the functicns u, and v, are convex
on [—1, 1] for all n€N.

(b) For the sequence u, we have ]u,,(x)—lx}]é-g—(xe[—l 1] and n€N)

and analogously for the sequence v, we have |v, (x)——]x]]s x€l-1, 1]

and nEN). Hence, both of the sequences u, and v, are uniformly convergent to
the limit function f(x)=|x| on [—1, 1], 1. e. in order to prove the statement
(b) of our lemma we can take f,=u, or we can take f,=v,

(c) If we take f(x)=| x| then obviously we have f7, (0)= l and f_(0)= —1.

On the other hand if we define f,=u, then it follows that f,. (0)=
—f,,_(O) 0. Hence, the sequences fr and fr— are convergent and the limit
point is 0 wherefrom the procf of the statement (c) fellows. The same state-
ment can be proved if we consider the sequence f,=v,

(d) To prove the statement (d) we have constructed two sequences u
and v, which satisfy all of the conditions (a) — (c).

Now we shall consider the sequence f, defined by f,,(x)=u,,(x),
Lok ()=, (x) for all x&[—1,1] and all k&N. It can be directly veri-

fied that fory (0)=f24-(0)=0 and f2x—1+(0)=f2e—1— (0)=%- Frcm the abo-

ve statement (a) it follows that the sequence f, converges uniformly to the
function f(x)=|x| on [—1, 1]. Hence, both of the scquences fry (0) and

fn_ (0) have two points of accumulation 0 and% wherefrom the proof of

n

our lemma follows.
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Besides the counterexample given in lemma 2.1. we can prove that the
sequences of derivatives of convergent sequence of convex functions possess
some good properties.

Theorem 2.1. Let us suppose that the sequence f,(n&N) of convex functions
(Where all the functions are defined on the same domain I) converges point by po-
int on I, to the finite function f. Then:

(a) for every point x,&intI we have

(2.1) h?n o ) =f"+ (%)
(b) Under the above suppositions the sequence f, (n_g N) and the point
x,int1 can be chosen in such a manner that we have lim f,. (x))<fi (x,).
n—>+ o

Proof. The statement (b) of our theorem is just proved in the above
lemma 2.1. It remains only to prove the statement (a).

Since x,CSintl, on the basis of the assumptions of our theorem it fol-
lcws that all values f7, (x;) and fa4 (x,) are finite.

Suppose on the contrary to (2.1) that there exists x,&int] and a sub-
sequence [+ (x,) such that

(2.2) kliin S+ (%) = A>f, ().
Further on, let us suppose that €>0 is fixed but in such a way that we have
2.3 A—ce>f1 (x)).

In virtue of (2.2) it follows that there is k,EN such that we have fa+ (x))>
>A—¢ for all k=k,. Since all ths functions f, arc convex on I we get that
the inequality

Su, D —Sa ) _,
2.4) e e fat (> A~

Y—2X,

holds for all y€intI, and all k=k, where we have supposed that y>x,.
Letting k— + oo, from (2.4) it follows that the condition

fO)—f(x) =Ad—¢

y_xo

(2.5)

is satisfi:d for every y>x, Let now y— x,+0, wherefrom and by the use
of (2.3) and (2.5) it follows that we have f (x))=4 —e>f (x,) which is a
contradiction. From this contradiction it follows that we can conclude that
A=f' (x,) which proves that (2.1) holds true.

We have showed in lemma 2.1. that if the sequence f,. (or the sequ-
ence f,.) converges, this still does not mean that the equality lim f, (x)=

n—»-4
—f’ (%) (or the equality lim f7_ (x)=f_ (x)) holds true. Meanwhile, the
n—-+ o

qusstion of the validity of that equality, can be solved by using the- the-
orem 2.1.
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Theorem 2.2. Suppose that a sequence of functions f,(nSN) convex on I, con-
verges point by point, everywhere in I, to the finite function f. Then the equality

(2.6) lim fa, (X)=f% (%)

n—»+ o

holds for some point xEint 1, if and only if for the same point we have

(2.7) 1_1_12 Sre () =f (%)
H—>-- 0

Proof. It can be directly verified that (2.7) follows from (2.6).

On the contrary, let us suppose that the relation (2.7) holds true. Since
the suppositions of theorem 2.2. are identical to those of theorem 2.1. then
(2.1) holds true, which besides (2.7) implies that the sequence f,. (x) con-
verges and that its limit value is f} (x), wherefrom the proof of theorem
2.2. follows.

Without proof, we shall give the statements of two theorems which are
analogous to that of theorems 2.1 and 2.2 and which are valid for the se-
quences of left derivatives of a given sequence f, of convex functions.

Theorem 2.3. Let us suppose that the sequence f,(mnEN) of comvex functions on
I converges point by point everywhere in I to the finite function f. Then:

(a) for every point x,cint I we have

(2.8) lim fh (i) 217 ().

n—»4- 0

(b) Under the above conditions the sequence f,(n<N) and the point x,C
cint I can be chosen in such a way that

lim fi_ (x)>fL (%).

n—»+w

Theorem 2.4. Suppose that the sequence f,(n&N) of functions convex on I, con-
verges point by point everywhere in I to the finite function f. Then, for some po-
int xEint I, we have

2.9 lim £ 9=/~ (9
if and only if the condition
(2.10) nEn;fn_ ®=f-®

is satisfied for the same point.
Now we shall return to the sets G,(nEN;) and G defined above. Let

us suppose that the sequence f,(n<&N) satisfies the conditions of theorem 2.1
+w

on some interval I and suppose that x,Cint I\U G, (i. e. the point x, is

such that all the functions f,(n&N) are dlfferentlable at x,). Then, as we can
conclude from the examples constructed in lemma 2.1, the limit function f
(which is convex) does not have to be differentiable at x,, even in the case
when the sequence f,(x,) (nEN) is convergent. However, in some sense we
can prove the opposite statement.
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Theorem 2.5. Let us suppose that the sequence f,(n&N) of functions, defined on
some interval I, satisfies the conditions of theorem 2.1. Then, for every point
X, Eint ING, we have .

2.11) lim fhy ()= lim fi (o) =/ (%),

Proof. For an arbitrary point x,&int the inequality f,_ (x))<fr+ (x,)
is valid for every n&N. Therefrom it follows that we have

lim fi_(xp)< lim fh, (x)= Lm f7, (x,).
—iw fhaver=) nto

By the suppositions of our theorem we have that the conditions (2.1) and
(2.8) are valid so that for if x,&int I\ G, we obtain

S x)=f2 ()= Iim [ (xo) én_l?in_wf nt (%) =f" (%0

n—»—+

which proves the theorem i. e. (2.11).

Under the condition of the theorem 2.1 from (2.11) we obtain the
statement of the theorem 1.1 or equivalently to that of theorem 1.2 if in
addition we assume that x,Cint I\ G, where G is the above defined set.

From the theorems prcved above and thsorem 1.2 it can be directly
concluded that the following statement is valid: if the suppositions of thzo-

rem 2.1 are satisfied for the functions f and f,(n&N), on some interval J
then:

(i) the sequence 7, (x,) (or the sequence f,_ (x)) can be divergent in
at most countable set of points x&int 1.

(ii) the set of points x&int I at which the sequence f,, (x) (or the se-
quence f,— (x)) converges but at the same time the inequality (2.6) (or rcs-
pectively the inequality (2.9)) is not satisfied, is at most countable.

Those results directly follows from (2.1) — (2.10).

3. All the sequences and functions which we have considered in the part 2
of the present paper are such that the values of those functions are finite
real numbers, i. ¢. the pcints + o and — oo are exluded from cur conside-
rations. This was ensured by the suppcsiticn that all finite and convex func-
tions are considered in the interior of the corresponding domain of definition
of those functions, where the left and right derivatives are finite functions.

In this part of the present paper we shall consider the above defined
sequences and functions but at this time our considerations will be concen-
trated to the end points of the domain of convexity. Hence, it is sufficient
to consider the intervals of the form [a, b)(— co<a<b= + ) or (a, b]
(— 0 =a<b< + ) at which the right or the left derivative of a convex
function f respectively satisfies —oo=f} (@d<+0 or —w<f_(b)= + .
In cther words we will consider the sequences and functions whose values are
possibly — oo or + oo at the end points @ or b. At the same time we will

regard that the limit values, the left and right derivatives of the considered
functions, exist in the extended sense.
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In the following theorem we will show that the result of theorem 2.1
remains valid even in the case if we consider the left end point of the in-
terval [a, b) (where in proving that theorem we shall respect the above con-
ventions).

Theorem 3.1. Let us suppose that the sequence of functions f,(n<N) convex on

[a, ) converges point by point everywhere in [a, b) to the finite functions f. Then
we have

G.1) im £ (@ =14 (@),

Proof. The set N of all natural numbers we will divide into two sub-
sets N;(i=1, 2) in such a manner that

N,={rEN/|fri(@>— o}, N,={ncN]|f1ri (@)= — o}

Hence, we have N=N,UN, and N,N\N,= @. To prove th: relation (3.1) we
have to distinguish the following cases:

(i) In th> set N, there is only finite numbor of clements.

In that case there exists ny&N such that we have n€N, for all nzn,.
Therefrom it follows that we have lim f,,(a)= —oo. Ia that way in bcth

n—>+4 o
cases f/ (@)= — o0 or f' (@)> — oo we corcluds that the relation (3.1) is true.

(i) In the set N, thcre is an infinite numb.r cf elements.

Now, there is 2 subsequence fih .+ (@) (k&N) f the sequence f, (a)
(n&N) whose every member is o finite recl numbir (herce whose every mem-
ber is > — o). Now, thz prccf cf the relation (3.1) is analcgous fo that cf
thecrem 2.1 in bcth of the cases f) (@)= — oo or f' (a)> — oo where in prc-
ving that fact we have to start from the sequercz fr.+ (@) (kEN).

Withcut proof we will give the fl.llowing thzcrem which helds true for
the sequence of the left derivatives and which is analogcus to the above
theorem.

Theorem 3.2. Let us suppose that the conditions of the theorem 3.1 are satis-
fied for the functions f and f,(nEN) on some interval (a, b]. Then we have

(3.2) lim £, (B zf" (b).

n—>+ 0

By using the relations (3.1) and (3.2) it is possible, as in the part 2 ¢f
this paper, to investigate the conditions under which the sequences fny (a@) cr
fn—(b) converge respectively to the limit values f’; (@) cr f- (b). Those thc-
orems will be not stated here explicitly because of their complete analogy
with the above theorems.

From the theorems 2.1. and 3.1 it follows that the relation (2.1) holds
true for every x,&[a, b) and analogously from the thecrems 2.3 and 3.2 w:
get that the relation (2.8) is valid for all x,E(a, b].

4. In this Jast part of cur paper, we will give scme consequences of the
theorems proved above and at the same time we will give a few remarks in
connection with the possibility of weakening assumptions of previously preved
thecrems.
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As one can expect from the above theorems directly follows an analo-
gous result for infinite series of convex functions.

Theorem 4.1. Assume that every one of the functions f,(n€EN) is convex on I
+ o

and that the series 2. Jx (x) converges point by point everywhere in I to the finite
k=1

Junction. Then for ev:ary point x,&int I we have

M S fi, () <f% ().
=1

n—+ o P

4
Besides, the series > fiy (x,)converges and we have the equality
k=1

+o
> fier (x0) =S+ (x0)
k=1

if and only if the condition

im S fie (i) =f% (x)

n—»-t+o p_1
is satisfied.

Analogous results can be obtained for the series of the left derivatives
of the functicns convex on some domain I

For the infinite products of convex functions we can state theorems
analogous to the previous one based on the above thcorems. Stating those
theorems we have to take into account the conditions which ensure the con-
vergence point by point of the infinite products in consideration (in conne-
ction with those conditions see [2] page 20).

In all of the above thcorems we have supposed that the considered se-
quence f,(n<N) convergss point by point in the interval in question. Well
known are the conditions which ensure the convergence, of that type, of the
sequences of the convex function (see [2] page 20). For example, in the mo-
nograph [2] we can find the following conditions:

(a) A sequence of convex functions should be such that we have:

() fos1 (D)=L, (x) (nEN) for every x&I and

(ii) there exists x,Eint ] such that the sequence f,(x,) (nEN) is bounded
from below.

(b) A sequence of convex functions should be such that we have:

G) foe(®=f,(x) mEN) for every x& I and

(ii) there exist @, b<1I such that the sequences f,(a) and f,(b) are boun-
ded from above.

(¢) A sequence of convex functions f,(n<N) converges to the finite
function f in a set which is everywhere dense in the set L

(@) A sequence f,(n&N) of convex functions is bounded point by point
in I

Every one of the conditions (a) — (d) implies the convergence pcint by
point of the sequence f, in I. Espscialy, the condition (¢) implies that the
sequence f, (nEN) converges point by point everywhere in int 7.
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Hence, everyone, of the conditions (a) — (¢) can be taken as the sup-
position in the above theorems instead of the assumption of convergence point
by point.

From the assumption (d) it follows that there exists a subsequence
JSou (k&EN) of the sequence f,(n&N) which converges uniformly on every ccm-
pact subset of the set int I. This time we can derive the corresponding con-
clusions for the sequences of right and left derivatives of the functions belon-
ging to the subsequence fu. .

All the statements we have considered do not change their sense if in-
stead of convex functions we consider strictly convex functions.
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O PONASANJU NIZOVA LEVIH I DESNIH IZVODA KONVERGENTNOG
NIZA KONVEKSNIH FUNKCIJA

Ivan B, Lackovi¢

U radu su ispitivani uslovi pod kojima niz levih i desnih izvoda konvergentnog niza
konveksnih funkcija konvergira ka izvodnoj funkciji grani¢ne funkcije datoga niza.



