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737. NOTE ON MULTIDIMENSIONAL GENERALIZATIONS
OF CEBYSEV’S INEQUALITY*

Josip E. Pecari¢, Radovan R. Jani¢ ard Paul R. Beesack

The following two multidimensional generclizations of thz well-known
CEeBYSEV inequzlity were proved by L. VIETORIs [5] in 1974.

Theorem A. If ai,.. . i, and b;, . i, (x=1,...,my, k=1,...,r) are real-valued
Sunctions of indices i,, ..., i, then

1 I;[mkzaibigzaizbi

holds, where the summation is over all combinations i=(i,,..., 1) of indices,
provided that for every two combinations i and j for which i <j, (k=1,...,r),
both a;<a; and b;<b;.

Theorem B. Let f(x) and g (x) be two nondecreasing functions on

X={x=(x;,...., x)a,sx,=b,, 1<k<r}.
Then

1) ] ®c-an [ feax=][fax- [ gax.
k X X X

It was already known that (1) is also valid if (q) and (b)) are similarly
ordered (cf. [5]), and similarly that (2) is valid if fznd g are similarly ordered.
(See Definition 2 below). In this pzper we shall prove two generalizations of
these results which will include both kirds of hypothescs on the functions, end
include both sums and integrals. First we require som= dcfinitions. Here, and
in all that follows, X is as in Theorem B.

Definition 1. For m=2, functions f;:X—R(j=1,..., m) are monotonic in the
same sense if either each f;(x, ..., x,) is nondecreasing in each x, (1<k<r) for
arbitrary values of x;&[a;, b)) (i#Kk), or each f; is nonincreasing in each x; for
arbitrary values of the other x;.

It is easy to see that this is the seme as: either

[ X)Sf;) for 1<jsm when a,<x, <y, <b, (k=)
or

[0 2f;() for 1=<j=m when a,<x,<y,<b, (1gk<r).

In the case m=2, functions f, f,:X—> R are monotonic in the opposite sense
if f;, —f, are monotonic in the some sense.

* Presented by R. DORBEVIC.
Ovaj rad je finansirala Republitka Zajedn'ca Nauke S:bije.
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16 J. E. Pedar’é, R. R. Jani¢ and P. R, Beesack

Definition 2. For m=2, functions fi,:X— R(1<k<m) are similarly ordered if

(HE =L —f,00)=0 for 1=i, jsm, all x, yeX.

In the case m=2, the functions f,, f, are oppositely ordered if f,, —f, are simi-
larly ordered.

In the one-dimensional case (r=1) it is clear that if the functions (f})
cre monotonic in the same sense then they are similarly ordered, but not
conversely. However for r =2 neither conditon implies the other. For example,
if all £, (x)=g(x) (1 =k<m) then the functions (f;) are clearly similarly ordered
for any g, even one which is not monotonic in any of its variables. On the
other hand, for r=2 th: m=r furctions f, defined by f, (xX)=x, (1 £k <r) are
clearly all monotonic in the same semse (increasing), but are not similarly
ordered since

FO-LONUHE =f0)= =) (x,—y)<0  (I1=i#j<r)
if x;<y; but x;>y; for some i, j.

Theorem 1. Let f, g:X— R be two continuous functions which are either similarly
ordered or monotonic in the same sense, and let uy:[a,, b,] — R be nondecreasing
Junctions, 1 <k<r. Then

3) [au)- [rgmdu=[fx) du(x)- [ g(x)dux).
X X X X

where du (x)=du, (x,)- - -du,(x,). If f, g are oppositely ordered, or monotonic in
the opposite sense, then the opposite inequality to (3) holds.

Proof. 1t f, g erz simil.rly ordcred, then
(@) -f) (gx)-g(1)=0, all x, y<X,

80

[ [(F®e@ -0 —f)g () +£() g () du(x) du () =0
X X

which reduces to (3) If f, g are monotonic in the same sense, we proceed by
induction on r. For r=1, f and g are elso similarly ordered and so (3) holds
by what was just proved. Suppose that (3) holds true for some r=1, and
for r+1, write (x, s)=(x;,..., X,, 5). Then

bri1 bryy

J [ ey, )] [ £ 5)g@ 5)du)dy,,, ()

X arqa X ar+1
bri1 bri1
- [ w0 [ ([au Jre 0z f)du () dy,., (¢)
ar+1 ar+1 X
brya
=z [ du,, @) f ( f FGx, 0y dux)) ([ 866 1) du(x))dup (1)
ar:1+1 r+l briy

z[ [ fendu@dy, -] [ g(x du(x)du,.,, @),

X arq, X ari1
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because the functions x> f(x, ¢) and x+ g(x, t) are monotonic in the same
sense for each ¢t&[a,.,, b,.,] 2t the first inequality sign, ard the functons

t— f f(x, t)du(x), t— f g (x, t)du(x) are both monotonic in the same sense

X X

at the last inequality sign. Hence (3) also holds for all r=1 when f, g are
monotonic in the same sense.

When f, g are either oppositelly ordered or are monotonic in the opposite
sense, the reverse inequality follows by applying (3) to the functions f, —g.

The inequality (3) when f, g are similarly ordered and all u, (¢)=¢ is
given in HARDY, LITTLEwOOD and POLYA [3; p. 168]. In a paper published
in 1967 [1], an inequality of the general form (3) appeared for the case
that f, g are similarly ordered; it was also claimed that this condition was
not only sufficient but was also nccessary for the validity of (3) on every
subregion X;CX. For a discussion of this (false) assertion, see [2].

We now use Theorem 1 to prove

Theorem 2. Let the functions f,, ..., f,.X— R be continuous, nonnegative, and
either similarly ordered or monotonic in the same sense. If u:.la,, b,]— R are
nondecreasing functions, then

“ ( deu(x)>m_: Xf £ () du ()= "mI;I‘X 5,09 du (),

where X and du are as in Theorem 1.
Proof. Under either hypothesis, we may proceed by induction on m.
For m=1, (4) is trivially true and for m=2, (4) reduces to (3). Suppose

that (4) holds for some m=2, and that all f;(1<j<m+1) are nonnegative,
continuous, and either similarly ordered, or monotonic in the same sense.

Set F(x)=]]/fi(® G (x) =fn,1(x). If all f; are monotonic in the same sense,

1
so are F, G by Definition 1, because all f;=0. If all f; are similarly ordered,
so are F, G that is

5) F)-FM)(Gx-G»)=0, al x,y, €X.

The inequality (5) clearly holds if G(x)=G(y). For other x, ycX we have
either G(X)=fi 1 (<[ 1 (D =G (), or G(x)>G(»). In the first case it
follows from Definition 2 that we must also have fi(x)<f(») for 1=i<m,
whence F(x)=F(y) since all £;=0. Similarly if G(x)>G(y), then F(x)=F(y)
must hold, and so (5) holds for all x, y&X.

But now, by the case m=2 and the inductions assumption we have

(fdu[ "f[;f;(x)du=(f dulm_l(f dquF(;c)G(x)du

g(fdu)m—leI’f[f,-(x)du-:[fmﬂ(x)du z"iffx £ du

X
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Special cases of inequalities of the form (3) involving a product of
more that two functions were proved as long ago as 1883 by C. ANDREIEF.
See [4; (9.2)] for a discussion of this and many other historical references to
the CeBYSEV inequality.
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NOTA O MULTIDIMENZIONALNOJ GENERALIZACIJI
CEBYSEVLJEVE NEJEDNAKOSTI

J. E, Pecarié, R. R. Jani¢ i P. R. Beesack

U radu je data multidimenzionalpa generalizacija CeBy3evijeve nejednakosti za mono-
one funkcije, kako za dve tako i za n funkcija. Dobijeni rezultati su uopitenje ViETORISOVih
rezultata za Cemy3evijevu nejednakost.



