735. ON GENERALIZED CONVEXITY PRESERVING MATRIX TRANSFORMATION*

Ljubiša M. Kocić

The necessary and sufficient condition for a real triangular matrix (p_{nk}) $(0 \le k \le \le n, n=0, 1, \ldots)$ have been investigated, so that the implication

$$(a_{n+2}+(p+q) a_{n+1}+pq a_n \ge 0) \Rightarrow (s_{n+2}+(p+q) s_{n+1}+pq s_n \ge 0)$$

$$(n=0, 1, ...)$$
 holds, where is $s_n = \sum_{k=0}^{n} p_{nn-k} a_k$ $(n=0, 1, ...)$.

Two particular cases: 1° p=q>0 and 2° p=1, q>0, $q\neq 1$, have been considered.

1. Let $a = (a_n) (n \in \mathbb{N}_0)$ be an arbitrary real sequence. For real p and q we define difference operator $\Delta_{p,q}$ with

$$(1.1) \Delta_{p,q} a_n = a_{n+2} - (p+q) a_{n+1} + pq a_n \quad (n \in \mathbb{N}_0).$$

It is easy to see that the following properties

(1.2)
$$\Delta_{p,q}(Ca_n) = C \Delta_{p,q} a_n \qquad (C - \text{real constant}),$$

$$(1.3) \Delta_{p,q}(a_n+b_n) = \Delta_{p,q}a_n + \Delta_{p,q}b_n,$$

hold.

Now, we shall introduce the concept of (p, q)-convexity of real sequence.

Definition 1. We say that a sequence (a_n) $(n \in \mathbb{N}_0)$ is (p, q)-convex if

$$(1.4) \Delta_{p,q} a_n \ge 0$$

for every $n=0, 1, 2, \ldots$

Note that, in a particular case $\Delta_{1,1} \equiv \Delta^2$, i. e. for p=q=1, $\Delta_{p,q}$ reduces on the well-known second difference and definition 1 becomes a definition of convex sequence of order 2.

Let (p_{nk}) $(k=0, 1, \ldots, n; n=0, 1, 2, \ldots)$ be an infinite triangular matrix of real numbers, and let a sequence (s_n) $(n \in \mathbb{N}_0)$ be defined by

(1.5)
$$s_n = s_n (a) = \sum_{k=0}^n p_{nn-k} a_k \quad (n \in \mathbb{N}_0).$$

^{*} Presented by J. D. Kečkić and J. L. Reid. Ovaj rad je finansirala Republička Zajednica Nauke Srbije.

It is clear that (1.5) represents a transformation T of a sequence a into a sequence s, i.e. s = Ta.

In [1], N. OZEKI gave the sufficient conditions for the triangular matrix (p_{nk}) so that for each convex sequence (a_n) the implication

$$(1.6) (\Delta^2 a_n \ge 0) \Rightarrow (\Delta^2 s_n(a) \ge 0) (n \in \mathbb{N}_0),$$

is valid.

In [2], D. S. MITRINOVIĆ, I. B. LACKOVIĆ and M. S. STANKOVIĆ proved that these sufficient conditions are at the same time the necessary ones.

Putting
$$p_{n,k}^{(1)} = \sum_{j=0}^{k} p_{nj}$$
, $p_{n,k}^{(2)} = \sum_{j=0}^{k} p_{n,j}^{(1)}$, the complete theorem reads:

Theorem A. The necessary and sufficient condition that the implication (1.6) is valid, for every sequence (a_n) , where the sequence (s_n) is given by (1.5), is that the following conditions

(a₁)
$$p_{n+2, n+2}^{(1)} - 2 p_{n+1, n+1}^{(1)} + p_{n, n}^{(1)} = 0$$
,

(a₂)
$$p_{n+2, n+1}^{(2)} - 2 p_{n+1, n}^{(2)} + p_{n, n-1}^{(2)} = 0$$
,

(a₃)
$$p_{n+2, n-k+2}^{(2)} - 2p_{n+1, n-k+1}^{(2)} + p_{n, n-k}^{(2)} \ge 0$$
 $(k=2, \ldots, n),$

(a₄)
$$p_{n+2,1}^{(2)} - 2 p_{n+1,0}^{(2)} \ge 0$$
,

$$(a_5) p_{n+2,0}^{(2)} \ge 0.$$

hold.

In present paper the necessary and sufficient condition for matrix T preserving (p, p)-convexity, p>0, i.e. (1, q)-convexity q>0, $q\neq 1$, will be given.

The difference equation

(1.7)
$$\Delta_{p,q} a_p = 0, \ p > 0, \ q > 0,$$

has the characteristic equation

$$(1.8) \qquad \qquad \lambda^2 - (p+q)\,\lambda + pq = 0.$$

If p and q are real, two essentially different cases will be considered:

1° p=q. In this case, the basic system of solutions of the equation (1.7) is (p^n, np^n) (n=1, 2, ...);

 2° $p \neq q$, then the basic system is $(p^{n}, q^{n}) (n = 1, 2, ...)$.

2. In this part of paper we will consider p=q, p>0, i.e. the difference operator

(2.1)
$$\Delta_{p,q} a_n = \Delta_p^2 a_n = a_{n+2} - 2 p a_{n+1} + p^2 a_n \quad (n \in \mathbb{N}_0).$$

The formal equality $\Delta_{p,p} a_n = \Delta_p^2 a_n$ is a consequence of the iteration of the first order difference operator

$$(2.2) \Delta_p a_n = a_{n+1} - pa_n.$$

Indeed, we have $\Delta_{p,p} = \Delta_p (\Delta_p) = \Delta_p^2$.

Now, we will prove the following lemmas.

Lemma 1. For every $m = 1, 2, 3, \ldots$ the sequence $(u_i^m)(i = 1, 2, \ldots)$ defined by

$$u_i^m = \begin{cases} p^i & , \ 1 \le i \le m \\ (i-m)p^i, \ i \ge m+1, \ p > 0, \end{cases}$$

is (p, p)-convex, i. e. $\Delta_p^2 u_i^m \ge 0$ (i = 1, 2, ...; m = 1, 2, 3, ...).

Proof. It immediately follows for sequence (2.3) that for every $m = 1, 2, 3, \ldots$ we have

$$\Delta_p^2 u_i^m = \begin{cases} p^{m+2}, & i = m \\ 0, & i \neq m, \end{cases}$$

and, if we take into account the condition p>0, we have the proof of the lemma.

Now, for triangular matrix (p_{nk}) (k=0, 1, ..., n; n=0, 1, 2, ...), we put

(2.5)
$$P_{n,k} = \sum_{i=1}^{k} p^{n-i} p_{ni}, \quad Q_{n,k} = \sum_{i=0}^{k} P_{n,i}.$$

Also, we write

 $b_0 = a_0$, $b_1 = \Delta_p a_0 = a_1 - pa_0$, $b_k = \Delta_p^2 a_{k-2} = a_k - 2 pa_{k-1} + p^2 a_{k-2} (k = 2, 3, ..., n)$. We have the following lemma:

Lemma 2. For every $n = 0, 1, 2, \ldots$ and $s_n(a)$ defined by (1.5), the following identity holds

$$(2.6) s_n(a) = P_{n,n}b_0 + \frac{1}{p}Q_{n,n-1}b_1 + \frac{1}{p^2}Q_{n,n-2}b_2 + \cdots + \frac{1}{p^n}Q_{n,0}b_n,$$

where a is an arbitrary real sequence.

Proof. Determine the coefficients $\alpha_1, \alpha_2, \ldots, \alpha_n$ in

$$(2.7) a_n = \alpha_0 b_0 + \alpha_1 b_1 + \cdots + \alpha_n b_n$$

for an arbitrary a_0, a_1, \ldots, a_n . Putting in (2.7) $a_i = p^{i+1}$ $(i = 0, 1, 2, \ldots)$ we have $b_0 = a_0 = p$, $b_k = 0$ $(k = 1, 2, \ldots, n)$, because the sequence p^{i+1} is (p, p)-convex. Put $a_i = u_i^k$ $(i = 0, 1, \ldots, n)$. In virtue of lemma 1, for fixed k, we have $b_k = p^k$ and $b_i = 0$ $(i \neq k)$ and we get $\alpha_k = (n - k + 1) p^{n-k}$ $(k = 1, 2, \ldots, n)$.

In such a manner, (2.7) becomes

$$a_n = p^n b_0 + np^{n-1} b_1 + (n-1) p^{n-2} b_2 + \cdots + 2 pb_{n-1} + b_n$$

so we have

$$s_{n} = (p_{nn} + pp_{nn-1} + p^{2} p_{nn-2} + \cdots + p^{n} p_{n0}) b_{0}$$

$$+ (p_{nn-1} + 2 pp_{nn-2} + \cdots + np^{n-1} p_{n0}) b_{1}$$

$$+ (p_{nn-2} + 2 pp_{nn-3} + \cdots + (n-1) p^{n-2} p_{n0}) b_{2}$$

$$+ \cdots + (2 pp_{n0} + p_{n1}) b_{n-1} + p_{n0} b_{n},$$

wherefrom (2.6) follows.

Now, we have the following theorem:

Theorem 1. The necessary and cufficient condition that the implication

$$(2.8) (a_{n+2} - 2 p a_{n+1} + p^2 a_n \ge 0) \Rightarrow (s_{n+2} - 2 p s_{n+1} + p^2 s_n \ge 0)$$

 $(n \in \mathbb{N}_0, p > 0)$ is valid, for every sequence (a_n) , where the sequence (s_n) is given by (1.5), is that the following conditions hold:

(b₁)
$$P_{n+2, n+2} - 2 p P_{n+1, n+1} + p^2 P_{n, n} = 0$$
,

$$(b_2) Q_{n+2, n+1} - 2 p Q_{n+1, n-1} + p^2 Q_{n, n-1} = 0,$$

$$(b_3) Q_{n+2, n-k+2} - 2 p Q_{n+1, n-k+1} + p^2 Q_{n, n-k} \ge 0 \quad (k=2, 3, \ldots, n),$$

$$(b_4) Q_{n+2,1} - 2 p Q_{n+1,0} \ge 0,$$

$$(b_5) Q_{n+2,0} \ge 0$$
 (i.e. $p_{n0} \ge 0$).

Proof. Prior to proceeding to the proof of this theorem we will establish that on the base of (2.6) we have

(2.9)
$$\Delta_{p}^{2} S_{n} = (P_{n+2, n+2} - 2 p P_{n+1, n+1} + p^{2} P_{n, n}) b_{0}$$

$$+ \frac{1}{p} (Q_{n+2, n+1} - 2 p Q_{n+1, n} + p^{2} Q_{n, n-1}) b_{1}$$

$$+ \sum_{k=2}^{n} \frac{1}{p^{k}} (Q_{n+2, n-k+2} - 2 p Q_{n+1, n-k+1} + p^{2} Q_{n, n-k}) b_{k}$$

$$+ \frac{1}{p^{n+1}} (Q_{n+2, 1} - 2 p Q_{n+1, 0}) b_{n+1} + \frac{1}{p^{n+2}} Q_{n+2, 0} b_{n+2}.$$

The conditions $(b_1) - (b_5)$ are necessary.

The identity (2.6) holds for an arbitrary sequence (a_n) $(n \in \mathbb{N}_0)$. If we take $a_n = p^{n+1}$ (n = 0, 1, 2, ...), we have $\Delta_p^2 a_n \ge 0$. In virtue of the implication (2.8), taking into account that $b_k = 0$ (k = 1, 2, ..., n), we get

(2.10)
$$\Delta_{p}^{2} s_{n} = P_{n+2, n+2} - 2 p P_{n+1, n+1} + p^{2} P_{n, n} \ge 0.$$

Otherwise, the sequence $a_n = -p^{n+1} (n \in \mathbb{N}_0)$ is also (p, p)-convex and for this reason

(2.11)
$$\Delta_n^2 s_n = -(P_{n+2, n+2} - 2 p P_{n+1, n+1} + p^2 P_{n, n}) \ge 0.$$

The inequalities (2.10) and (2.11), taken together, give the condition (b_1) .

Now, let $a_n = (n+1) p^{n+1}$ $(n \in \mathbb{N}_0)$. We have $b_1 = p^2$, $b_k = 0$ $(k = 2, \ldots, n)$ and $\Delta_n^2 a_n \ge 0$, so that

(2.12)
$$\Delta_{p}^{2} s_{n} = \frac{1}{p} (Q_{n+2, n+1} - 2 p Q_{n+1, n} + p^{2} Q_{n, n-1}) p^{2} \ge 0.$$

On the other hand, for $a_n = -(n+1) p^{n+1} (n \in \mathbb{N}_0)$, we have $b_1 = -p^2$, $b_k = 0$ $(k=2,\ldots,n)$ and $\Delta_p^2 a_n \ge 0$. Thus, we get

$$\Delta_{p}^{2} s_{n} = \frac{1}{p} \left(Q_{n+2, n+1} - 2 p Q_{n+1, n} + p^{2} Q_{n, n-1} \right) \left(-p^{2} \right) \ge 0,$$

which together with (2.12) and for p>0 gives (b_2) .

With the conditions (b_1) and (b_2) , (2.9) becomes

(2.13)
$$\Delta_{p}^{2} s_{n} = \sum_{k=2}^{n} \frac{1}{p^{2}} (Q_{n+2, n-k+2} - 2 p Q_{n+1, n-k+1} + p^{2} Q_{n, n-k}) b_{k} + \frac{1}{p^{n+1}} (Q_{n+1, 1} - 2 p Q_{n+1, 0}) b_{n+1} + \frac{1}{p^{n+2}} Q_{n+2, 0} b_{n+2}.$$

Further, choose $a = u^m$, where $u^m = (u_i^m)$ is given by (2.3). Let,

(2.14)
$$b_k^m = \Delta_p^2 u_{k-1}^m \quad (k=2, 3, \ldots, m=1, 2, \ldots),$$

Thus, for fixed m=k-1 we have $b_k^{k-1}=p^{k+1} \ge 0$, so it will be

$$\Delta_{p}^{2} s_{n} = \frac{1}{p^{n+1}} (Q_{n+2, n-k+2} - 2 p Q_{n+1, n-k+1} + p^{2} Q_{n, n-k}) p^{k+1} \ge 0$$

wherefrom, for $k=2, 3, \ldots, n$ we have the condition (b_3) .

Now, (2.13) becomes

$$\Delta_{p}^{2} s_{n} = \frac{1}{p^{n+1}} (Q_{n+1, 2} - 2 p Q_{n+1, 0}) b_{n+1} + \frac{1}{p^{n+2}} Q_{n+2, 0} b_{n+2}.$$

Further, if we put k=n+1, m=n in (1.14), we have $b_{n+1}^n = \Delta_p^2 u_n^n = p^{n+1}$, $b_{n+2}^n = 0$. On the basis of (p, p)-convexity of sequence u_k^n (k=1, 2, ...) we have that the sequence s_n is also (p, p)-convex and it is equivalent to the condition (b_4) .

If we put $a_n = u_n^{n+1}$, the last condition (b_5) is obtained. Hence $b_{n+2}^{n+1} = p^{n+3} \ge 0$.

The conditions $(b_1) - (b_5)$ are sufficient.

If (b_1) — (b_5) hold, it is clear from (2.9) that $\Delta_p^2 a \ge 0 \Rightarrow \Delta_p^2 s_n \ge 0$. $b_0 = a_0$ and $b_1 = a_1 - pa_0$ may have an arbitrary sign. This completes the proof.

REMARK. For p=1 we obtain OSEKI's theorem A.

3. In this section, we consider the case when the roots of the characteristic equation (1.8) are 1 and $q(q>0, q\neq 1)$. Corresponding difference operator will be

(3.1)
$$\Delta_{1,q} a_n = a_{n+2} - (1+q) a_{n+1} + q a_n \ (n \in \mathbb{N}_0).$$

We will prove the following statements:

Lemma 3. For every $m = 1, 2, 3, \ldots$ the sequence

(3.2)
$$v_i^m = \begin{cases} 1, & 0 \le i \le m-1 \\ q^{i-m+1}, & i \ge m, \end{cases}$$

is (1, q)-convex for q > 1.

Proof. We have

(3.3)
$$\Delta_{1,q} v_i^m = \begin{cases} q-1, & i=m-2 \\ 0, & i\neq m-2, & m=2, 3, 4, \dots, \end{cases}$$

and it is obvious that $\Delta_{1,q} v_i^m \ge 0$ for q > 1.

Now, for matrix (p_{nk}) (k = 0, 1, ..., n; n = 0, 1, 2, ...) let

(3.4)
$$R_{n,k} = \sum_{i=1}^{k} p_{n,i}, \quad S_{n,k} = \sum_{i=0}^{k} q^{k-i} R_{n,i},$$

and, for the sequence (a,) let

(3.5)
$$c_0 = a_0, c_1 = a_1 - a_0, c_k = \Delta_{1,a} a_{k-2} (k = 2, ..., n).$$

Then we have

Lemma 4. For every n = 0, 1, 2, ... the identity

$$(3.6) s_n = R_{n, n} c_0 + S_{n, n-1} c_1 + S_{n, n-2} c_2 + \cdots + S_{n, 0} c_n.$$

holds.

Proof. Suppose that

(3.7)
$$a_n = \beta_0 c_0 + \beta_1 c_1 + \beta_2 c_2 + \cdots + \beta_n c_n \ (n \in \mathbb{N}_0).$$

Putting in (3.7) $a_n = 1$ $(n \in \mathbb{N}_0)$ we obtain $\beta_0 = 1$. If, for $k = 1, 2, \ldots, n$, we chose $a_i = v_i^k$ $(i = 0, 1, \ldots, n)$, according to lemma 3, it follows that

$$c_k = \Delta_{1,q} v_{k-2}^k = q - 1, c_i = 0 \ (i \neq k).$$

Hence $q^{n-k+1} = 1 + \beta_k (q-1)$ wherefrom $\beta_k = \frac{q^{n-k+1}}{q-1} (k=1, 2, ..., n)$ follows.

Thus, we have
$$a_n = c_0 + \frac{q^n - 1}{q - 1}c_1 + \frac{q^{n-1} - 1}{q - 1}c_2 + \cdots + \frac{q - 1}{q - 1}c_n$$
, and

$$s_n = (p_{n0} + p_{n1} + \cdots + p_{nn}) c_0 + \left(p_{nn-1} + \frac{q^2 - 1}{q - 1} p_{nn-2} + \cdots + \frac{q^n - 1}{q - 1} p_{n0}\right) c_1$$

$$+\left(p_{nn-2}+\frac{q^2-1}{q-1}p_{nn-3}+\cdots+\frac{q^{n-1}-1}{q-1}p_{n0}\right)c_2+\cdots+\left(p_{nn}+\frac{q^2-1}{q-1}p_{n0}\right)c_{n-1}+p_{n0}c_n.$$

Using the identity $\frac{q^{m+1}-1}{q-1} = q^m + q^{m-1} + \cdots + q+1$ $(q \neq 1)$, according the notations (3.4), we have

$$s_{n} = R_{n,n} c_{0} + (R_{n,n-1} + q R_{n,n-2} + q^{2} R_{n,n-3} + \cdots + q^{n-1} R_{n,0}) c_{1}$$

$$+ (R_{n,n-2} + q R_{n,n-3} + \cdots + q^{n-2} R_{n,0}) c_{2}$$

$$+ \cdots + (R_{n,1} + q R_{n,0}) c_{n-1} + R_{n,0} c_{n},$$

wrerefrom the statement of lemma follows.

Now, we will prove the following theorem:

Theorem 2. The necessary and sufficient condition that the implication

$$(a_{n+2} - (1+q) a_{n+1} q a_n \ge 0) \Rightarrow$$

$$\Rightarrow (s_{n+2} - (1+q) s_{n+1} + q s_n \ge 0) \ (n \in \mathbb{N}_0, \ q > 0, \ q \ne 1)$$

is valid for every sequence (a_n) , where (s_n) is given by (1.5), is that the conditions $(c_1) R_{n+2,n+2} - (1+q) R_{n+1,n+1} + q R_{n,n} = 0$,

$$(c_2) S_{n+2,n+1} - (1+q) S_{n+1,n} + q S_{n,n-1} = 0,$$

$$(c_3)$$
 $S_{n+2,n-k+2}-(1+q)S_{n+1,n-k+1}+qS_{n,n-k}\geq 0$ $(k=2,\ldots,n-1),$

$$(c_4) S_{n+2,1} - (1+q) S_{n+1,0} \ge 0,$$

$$(c_5)$$
 $S_{n+2,0} \ge 0$ (i.e. $p_{n0} \ge 0$).

hold.

Proof. From (3.6) we have

$$\Delta_{1,q} S_{n} = (R_{n+2,n+2} - (1+q) R_{n+1,n+1} + q R_{n,n}) c_{0}$$

$$+ (S_{n+2,n+1} - (1+q) S_{n,n+1} + q S_{n,n-1}) c_{1}$$

$$+ \sum_{k=2}^{n} (S_{n+2,n-k+2} - (1+q) S_{n+1,n-k+1} + q S_{n,n-1}) c_{k}$$

$$+ (S_{n+2,1} - (1+q) S_{n+1,0}) c_{n+1} + S_{n+2,0} c_{n+2}.$$

The conditions (c_1) — (c_5) are necessary.

On the basis of the assumption of theorem, the implication (3.8) holds. The sequences $a_n=+1$ $(n\in\mathbb{N}_0)$ and $a_n=-1$ $(n\in\mathbb{N}_0)$ satisfy the condition $\Delta_{1,q}a_n\geq 0$, so that $\Delta_{1,q}s_n\geq 0$, i.e. $\pm(R_{n+2,n+2}-(1+q)R_{n+1,n+1}+qR_{n,n})\geq 0$, which is equivalent to the condition (c_1) .

Now, (3.9) reduces to

(3.10)
$$\Delta_{1,q} S_n = (S_{n+1,n-1} - (1+q) S_{n+1,n} + q S_{n,n-1}) c_1$$

$$+ \sum_{k=2}^{n} (S_{n+2,n-k+2} - (1+q) S_{n+1,n-k+1} + q S_{n,n-k}) c_k$$

$$+ (S_{n+2,1} - (1+q) S_{n+1,0}) c_{n+1} + q S_{n+2,0} c_{n+2}.$$

Sequences $a_n'=q^n(n\in\mathbb{N}_0)$ and $a_n''=-q^n(n\in\mathbb{N}_0)$ satisfied the conditions $\Delta_{1,\,q}a_n'=\Delta_{1,\,q}a_n''=0$, i.e. they are $(1,\,q)$ -convex. Then it must be $\Delta_{1,\,q}s_n\geq 0$. Besides that, for sequences a_n' and a_n'' will be $c_i'=c_i''=0$ $(i=2,\,3,\,\ldots)$, $c_1'=q-1$ and $c_1''=1-q$, so that

$$\Delta_{1,q} S_n = (S_{n+2,n-1} - (1+q) S_{n+1,n} + q S_{n,n-1}) (q-1) \ge 0,$$

and

$$\Delta_{1,q} S_n = (S_{n+2,n-1} - (1+q) S_{n+1,n} + q S_{n,n-1}) (1-q) \ge 0,$$

wherefrom $(S_{n+2,n-1}-(1+q)S_{n+1,n}+qS_{n,n-1})(q-1)=0$. Therefore, for $q\neq 1$, the condition (c_2) is valid.

Now, (3.10) reads

(3.11)
$$\Delta_{1,q} S_n = \sum_{k=2}^{n} (S_{n+2,n-k+2} - (1+q) S_{n+1,n-k+1} + q S_{n,n-k}) c_k + (S_{n+2,1} - (1+q) S_{n+1,0}) c_{n+1} + S_{n+2,0} c_{n+2}.$$

We shall consider two cases

1° q>1. Put $a_n=v_n^{\ k}(k=2,\ 3,\ \dots,\ n+2)$. For this sequence we have $\Delta_{1,\ q}v_{k-2}^{\ k}=q-1>0,\ \Delta_{1,\ q}v_j^{\ k}=0\ (j\neq k-2)$ (see lemma 3), i.e. it is (1, q)-convex. Therefore

$$\Delta_{1,q} S_n = (S_{n+2,n-k+2} - (1+q) S_{n+1,n-k+1} + q S_{n,n-k}) (q-1) \ge 0,$$

i.e. the conditions $(c_3) - (c_5)$ are satisfied.

 $2^{\circ} \ 0 < q < 1$. If we select $a_n = -v_n^k$, $\Delta_{1,q} \left(-v_{k-2}^k \right) = (1-q) > 0$, $\Delta_{1,q} v_j^k = 0$ $(j \neq k-1)$ i.e. (a_n) is (1,q)-convex, then we rederive $(c_3) - (c_5)$.

Sufficiency of the conditions follows from (3.9). It is evident that a_0 and $a_1 - a_0$ may have an arbitrary sign.

REFERENCES

- 1. N. OZEKI: Convex sequences and their means. J. College Arts. Sci. Chiba Univ. 4 (1965), № 3, 211—214.
- 2. D. S. MITRINOVIĆ, I. B. LACKOVIĆ and M. S. STANKOVIĆ: Addenda to the monograph "Analytic Inequalities", part II: On some convex sequences connected with N. Ozeki's results. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. № 634—№ 677 (1979), 3—24.

Elektronski fakultet 18 000 Niš, Jugoslavija

O GENERALNOJ KONVEKSNOSTI KOJA ČUVA MATRIČNU TRANSFORMACIJU Ljubiša M. Kocić

U radu su dati potrebni i dovoljni uslovi za realnu trougaonu matricu (p_{nk}) $(0 \le k \le n; n=0, 1, \ldots)$ tako da važi implikacija

$$(a_{n+2}+(p+q) a_{n+1}+pqa_n \ge 0) \Rightarrow (s_{n+2}+(p+q) s_{n+1}+pqs_n \ge 0 \ (n=0, 1, ...),$$

gde je $s_n = \sum_{k=0}^n p_{nn-k} a_k$. Pritom su razmatrani slučajevi 1° p=q>0 i 2° p=1, q>0, $q\neq 1$.