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724. SOME REMARKS ON THE GENERAL SOLUTION OF
ORDINARY DIFFERENTIAL EQUATIONS*

Jovan D. Keckié

1. Except in the case of linear equations, the general solution of a diffe-
rential equation is a very delicate concept. The general solution, taken literally,
means the solution which contains all the solutions of the considered equation,
and this applies to all equations, not only to differential equations. However, such
a definition is rarely ever given in books on differential equations. Careful writers
avoid to use the term ,,general solution‘, except for linear equations, but they
rather use expressions such as, ,,solution containing one arbitrary constant*, etc.
Nevertheless, one can often find that the general solution of an n-th order equation
is identified with the solution containing n arbitrary constants. Since some simple
equations show that this definition is not correct, the concept ,,singular solu-
tion** is introduced, meaning the solution which is not contained in the ,,ge-
neral solution‘‘,

ExamMpiE 1.1. For CLAIRAUT’s equation y=xy’+()')? it is said that it possesses the general
solution y=Cx+ C? (C arbitrary constant) and the singular solution y=—x2/4,

In his book [1] GoursaT writes: In order to recognize whether a solu-
tion is general, it is not enough to count the arbitrary elements which appear
in the solution.

ExampLE 1.2. The solution

1.1) y=C+Cyx+C;x* (C,, C,, C, arbitrary constants)
of the third order equation

a.2) wyr—y =0

contains three arbitrary constants, but it is not its general solution. Indeed, the eq. (12) is
also satisfied by any function of the form y=AeBx (A4, B arbitrary constants), and such fun-
ctions are not contained in (1.1).

In further text the term general solution will be used to denote the so-
lution containing all the solutions.

2. Consider the diferential equation

Q.1 F(O,p,¥,...,y™=0.

* Presented January 10, 1981 by D. S. MITRINOVIC.
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To find the general solution of (2.1) is equivalent to finding the set SCD,
(D, is the set of all n times differentiable functions) such that
Fx,,Y,...,)"=0 & y&Ss.

Since, by definition, the set S contains all the solutions of the eq. (2.1)
we could call S the general solution of (2.1). However, in order to conform
with the usual practice, we shall say that the general solution of (2.1) is de-
fined by a surjection P mapping D, onto S, i.e. we say that general solution
of (2.1) is given by
2.2) y(x)=Pu(x) (u& D, is arbitrary).

Naturally, we should not expect to be able to express P by one ,,analytic
expression‘‘,

Formula (2.2) for the general solution of (2.1) implies that the general
solution is defined by a fixed mapping P and an arbitrary function u&D,.
This is in accordance with the general approach suggested by PrRESIC ([2], [3]),
but, as we shall see, in case of differential equations, the mapping P will be
such that Pu(x) can be made to depend on arbitrary constants, instead of one
arbitrary function.

ExampLE 2.1, For the equation
@3 ' —()=0
the following equivalence holds:
W' —()=0 & yE{x> deBx | A, B&R}=S.

A surjection P:D,— S is defined by

Pu (x)=u (a) e¥ @x (a is a fixed point)
and hence the general solution of (2.3) is given by

y (x)=u (@) e¥’ (@x (#ED, is arbitrary),
or, equivalently y (x)=AeBx, where A=u(a), B=u’(a) are arbitrary constants.
ExaMmpLE 2.2, For CLAIRAUT’s equation y=xy’+ (¥")* we have

y=xy'+()? © y&S={xr> Cx+ C?| CER}U{x > —x2/4}.

A surjection P is defined by

u@x+u@? u(x)=0
—x*/4 , u(x)=0
giving the known solutions y (x)=Cx + C? and y= —x?/4, where C=u(a) is an arbitrary cons-

tant. The general solution, however, is not y=Cx+ C?, but y (x)=Pu(x), where P is given by
(2.9).

2.4 Pu (x)= {

ExampLE 2.3. For the equation (y—xy") (3’ —1)=0 we have
G—=x) (Y —D=0 © ycS={x+> Cx| CER}U{x > x+ C| CCR}L
A surjection P:D, — S is defined by
u(a x, ux)=px+q

= ’ R)
Py (x) {Hu(a)’ U (%) £px+a (p, 9€R)
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and the general solution of the considered equation is given by y(x)=Pu (x), where u(a) is
again denoted by C (arbitrary constant).

ExampLE 2.4. For the equation
2.5 YPpa yr-D4 ... 4a,y=0 (a; given constants)
CaucHy [4] (see also [S], pp. 202—204) gave the following solution:

u(2)
R
W= R

ezx,

where u is an arbitrary analytic function whose zeroes do not coincide with the zeroes of the
characteristic polynomial g (z)=z"+a,z"~! + --- +a, The summation is taken over all the
zeroes of g. In this case a surjection P is defined by -

u(z)
&(

e,

Pu(x)=2 Res

Suppose, for instance, that o,..., o, are simple zeroes of g. Then

u(@) “@ ., u) o x

Res ex= lim (z—oy) ——e*=——" %7,

=0y g(z 2> g(z) g ()
and hence,

7Y (1
Pu (x)= Z —Q %k,
=18 (%)
L (o) . .

Putting =C; (k=1,...,n), where C,,...,C, are arbitrary constants, we arrive at the

k
standard form of the solution of (2.5).

3. An eclegant way to prove that a solution of an equation (E) is general is
to replace the eq. (E) by an equivalent reproductive equation.

Let f:S— 8 where S is a nonempty set. We say that the equation

(3.1) x=f(x)
is reproductive if f2=f, i.e. f(f(x))=f(x) for all x&S. It is easily verified
that the general solution of the reproductive equation (3.1) is x=f(¢), where
t&S is arbitrary.

The above definition and the result are due to PrESiC [2]. He also pro-
ved that for any equatlon x=g(x), where g.:S5— S, there exists an equlvalent
reproductive equation, i.e.

x=g(x) & x=f(x), where f2=f.

It that case x=f(¢) is the general solution of the equation x=g (x), where
t&S is arbitrary. .
A convenient straightforward modification of the above is as follows: If

x=g(x) & x=fi{x)V - Vx=£f(x),

“where sz =fi (k=1,...,n), then all the solutions of the equation x=g(x)
are given by

x=fi(®)V -+ Vx=f,(t), where t&S is arbitrary.
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We shall show here how the equations from Examples 2.1, 2.2 and 2.3
can be put into reproductive form.

The following auxilliary result is necessary: The equation y =0 is equi-
valent to the reproductive equation y (x)=y(a), where a is fixed. This follows
directly from the meanvalue theorem.

ExampriE 3.1. For y#0 we have

, Y Y@ y@ , ¥ (a)
w—-()P=0< (—) =0 & A @y (x)— y(x)=0 <
y yx y@ y(a)
(y (x) exp (_y (a)x)) =0 < y(x) exp (_y (a)x)=y(a) exp (_y (a)a) =
y(@ y(a) y (@)
Y (@
Y@=y @ e (22 x-a).
¥ (@)
The last equation is reproductive, and hence its general solution is given by
)~F (@) (F 2
xX)=F (a) ex —
»( p (7 @ 9),
where FED, is an arbitrary function.
. F'(a) F’(a) .
Putting F(a) exp (— a)=A, =B, we obtained the standard form of the ge-
F(a) F(a)

neral solution: y=AeBx, where 4 and B are arbitrary constants,

ExampLE 3.2, From y=uxy’+(y")? follows y (0)=y" (0)® and, differentiating, y"’ (x +2 y")=0.

If =0 then y”’:y(‘): e =0,

If x+2y’=0, then ' (0)=0 and 1+2y”=0, y”"=)®=...=0. Hence, developping y
into TAYLOR’s series, we find

1
(3.2 y=xy'+()Y < y®)=y 07+y' O xVvVyx)= _—y x2.

Since both equations on the right hand side of (3.2) are reproductive, all the solutions
of the considered CLAIRAUT’s equation are given by

YyX)=F QP +F @) xVy(x)= ——-}xz,
where FED, is an arbitrary function, or
y=C*+CxVy= —%xz,
where C=F’(0) is an arbitrary constant.
ExampLE 3.3. We have (y—xpy)(y'—1)=0 < (%),=0V(y—x)’=0

y® y@
& ==
a

Vy@)—x=y(@—a

¥y (@

© y(x)= xXVy(x)=y@+x—a
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and the last two equations are reproductive. Hence, all the solutions of the equation

O—xy) (—1)=0
are given by

F(a)
y (x)=7— xVy(x)=F(@)+ x—a

where FED, is an arbitrary function, or

y=CxVy=C+x,

F(a
where C is arbitrary constant (in the first case C=L) , and in the second C=F (a)—a).
a

4. In paper [6] MaZros speaks of differential equations having ,several
general solutions®’. By that he means two or more geometrically different fa-
milies of integral curves. For instance, for the equation (y—xy)(» —1)=0
from Example 3.3, MAZiros would say that it has two general solutions. In
view of the ideas exposed here in Sections 2 and 3, such an approach seems
to be incorrect.

We also note that the examples given in [6] are not well chosen.

ExampLE 4.1. For the equation )"y —(y”)?=0 it is said in [6] that it has two different fa-
milies of solutions, namely

a
y=ax+b and y=—5— ebx 4 ¢ (a, b, ¢ arbitrary constants).

However, both families are contained in the expression
y=C+ f AeBx dx (4, B, C arbitrary constants).
ExaMpLE 4.2, For the equation
“.n 1+ (")) =2y y"=0
MaAZIrROs states that it has the following different families of solutions
“4.2) y=ax+b and x*+y*+ax+by+c=0 (a, b, ¢, arbitrary constants)
This is not correct — the eq. (4.1) should read

" (1+0))-3y ('y=0,

but independently from that, it is clear that the both families (4.2) are contained in

AXx*+y)+ Bx+Cy+D=0 (A4, B, b, D arbitrary constants).

5. For a rather general class of nonlinear first order equations we can,
in a way, identify the concepts ,,general solution and ,,solution with an
arbitrary constant¢.

In this case the term ,,general solution‘ is taken in a wider sense—not
as a solution which contains all the solutions, but as a solution from which
it is possible to obtain all the solutions.

Suppose that the equation
(5.1) Y =F(x,))
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has the following solution with an arbitrary constant

(5.2) R(x,y,C)=0 (C arbitfary constant; 'Z—i #0 ) .

If we introduce a new unknown function # by means of
(.3 R(x,y, w)=0,

then (5.1) is reduced to oa—Ru'=0, ie. to two equations
u

OR(x,y,u) _
u

(5.49) u' =0 and 0.

The first equation (5.4) implies u=C (C arbitrary constant) which toge-
ther with (5.3) gives the known solution (5.2).

The second equation (5.4) together with (5.3) gives parametric equations
for the solutions not contained in (5.2).

In certain cases it is possible to apply this method to first order equa-
tions which are not explicitely solved with respect to y'.

ReMARK. The procedure indicated above is a variant of the method of variation of constants.

ExamMpLE 5.1. The equation

(5.5) Yy +(xy +y)=0

has the solution with an arbitrary constant
CZ

- C+x

(5.6) y (C arbitrary constant).

Introduce the new function # by means of
u2

5.7 =,
GN - 7 u+x

Then, substituting (5.7), together with the corresponding expression for y’, into (5.5), after
some calculations, we find
wout (x2u' +u?) (u+2 x)P=0.

(i) If #'=0, then u=C, which together with (5.7) gives the known solution (5.6).

(ii) If u=0, then from (5.7) follows y=0, and this solution is contained in (5.6), for

@iii) If x?u' +u?=0, then u= (A arbitrary constant), and this combined with

(5.7) yields

Ax—1

1
r= Ax—A°

This solution, however, is contained in (5.6), and can be obtained from (5.6) for C= -

@iv) If u+2x=0, then from (5.7), we get y=—4x, which is a solution of (5.5) not
contained in (5.6), i.e. the ,singular solution*.
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NEKE PRIMEDBE O OPSTEM RESENJU OBICNIH DIFERENCIJALNIH JEDNACINA

J. D. Keékié

U radu se raspravlja o pojmu opiteg redenja obi¢nih diferencijalnih jednadina koje se
definife kao reSenje koje obuhvata sva reenja posmatrane jednaine. Pokazuje se, izmedu
ostalog, da je opste refenje definisano odredenim preslikavanjem i jednom proizvoljnom funk-
cijom, bez obzira na red jednafine.

Opisana je i jedna klasa jednacina prvog reda kod koje se iz reSenja sa jednom proiz-

voljnom konstantom (koje ne mora biti op3te reSenje) mogu, na odreden nadin, dobiti sva
refenja.



