714. NOTES ON CONVEX FUNCTIONS IV: ON HADAMARD'S INEQUALITIES FOR WEIGHTED ARITHMETIC MEANS*

P. M. Vasić, I. B. Lacković, D. M. Maksimović

In the present paper we give a necessary and sufficient conditions such that the Hadamard's inequalities are valid for an arbitrary arithmetic mean.

1. Let us suppose that $p_{i}(i=1, \ldots, n)$ are positive constants and let

$$
\begin{equation*}
A=\frac{\sum_{i=1}^{n} p_{i} x_{i}}{\sum_{i=1}^{n} p_{i}} \tag{1}
\end{equation*}
$$

where $x_{i}(i=1, \ldots, n)$ are given real numbers. Let us suppose further that the function $x \mapsto f(x)$ is convex on the segment $[m, M]$ where we have

$$
\begin{equation*}
m=\min _{1 \leqq i \leqq n}\left\{x_{i}\right\}, \quad M=\max _{1 \leqq i \leqq n}\left\{x_{i}\right\} . \tag{2}
\end{equation*}
$$

In the present paper we will investigate for which real values of $y \neq 0$ the following inequalities

$$
\begin{equation*}
f\left(\frac{\sum_{i=1}^{n} p_{i} x_{i}}{\sum_{i=1}^{n} p_{i}}\right) \leqq \frac{1}{2 y} \int_{A-y}^{A+y} f(t) \mathrm{d} t \leqq \frac{\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)}{\sum_{i=1}^{n} p_{i}} \tag{3}
\end{equation*}
$$

are valid for given values of the weights p_{i} and real numbers x_{i}.
The proposed problem was considered for $n=2$ in the following papers [1], [2], [3], [4] and [5]. Namely, in papers [1] and [2] we have proved the following theorem.
Theorem 1. Suppose that $p>0$ and $q>0$ are given constants and suppose that f is two times differentiable convex function on the segment $[a, b]$. Then the inequalities

$$
\begin{equation*}
f\left(\frac{p a+q b}{p+q}\right) \leqq \frac{1}{2 y} \int_{A-y}^{A+y} f(t) \mathrm{d} t \leqq \frac{p f(a)+q f(b)}{p+q} \tag{4}
\end{equation*}
$$

[^0]are valid, where
\[

$$
\begin{equation*}
A=\frac{p a+q b}{p+q}, \tag{5}
\end{equation*}
$$

\]

if and only if y satisfies the following condition

$$
\begin{equation*}
0<|y| \leqq \frac{b-a}{p+q} \min (p, q) \tag{6}
\end{equation*}
$$

In paper [3] A. LUPAŞ gave a proof of theorem 1 based on some properties of positive linear operators. The proof of A. Lupaş does not require the differentiability of the above function f.

In paper [4] the proof of theorem 1 is given based an approximations of continuous convex functions by polygonal lines.

Paper [5] contains a very short proof of theorem 1 where the only supposition is that the function f is convex on $[a, b]$.

If we have $a_{1}<a_{2}<a_{3}<\cdots<a_{2 n}$ and if the function f^{\prime} is increasing function then the following inequalities

$$
\begin{align*}
& f\left(\frac{a_{1}+a_{2}+\cdots+a_{2 n}}{2 n}\right) \leqq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{a_{2 i}-a_{2 i-1}} \int_{a_{2 i-1}}^{a_{2 i}} f(t) \mathrm{d} t \tag{7}\\
& \leqq \frac{f\left(a_{1}\right)+f\left(a_{2}\right)+\cdots+f\left(a_{2 n}\right)}{2 n}
\end{align*}
$$

are valid.
Inequalities (7) are considered in the paper [6].
2. In this part of the present paper we will give a necessary and sufficient conditions for validity of the inequalities (3). First of all we will prove the following lemma.

Lemma 1. Suppose that $p_{i}(i=1, \ldots, n)$ are positive constants and that $x_{i}(i$ $=1, \ldots, n$) are given real numbers. The inequality

$$
\begin{equation*}
f\left(\frac{\sum_{i=1}^{n} p_{i} x_{i}}{\sum_{i=1}^{n} p_{i}}\right) \leqq \frac{1}{2 y} \int_{A-y}^{A+y} f(t) \mathrm{d} t \tag{8}
\end{equation*}
$$

holds for every convex function f, defined on $[m, M]$ where m and M are given by (2), if and only if

$$
\begin{equation*}
0<|y| \leqq \min (A-m, M-A) \tag{9}
\end{equation*}
$$

where A is defined by (1).

Proof. We have supposed that the function f is convex on $[m, M]$. This means that the same function satisfies the inequality

$$
f(A)=f\left(\frac{(A+t)+(A-t)}{2}\right) \leqq \frac{f(A+t)+f(A-t)}{2}
$$

is valid if and only if $|t| \leqq \min (A-m, M-A)$. Therefrom it follows that we have

$$
\begin{aligned}
f(A) & =\frac{1}{y} \int_{0}^{y} f(A) \mathrm{d} t \leqq \frac{1}{y} \int_{0}^{y} \frac{f(A+t)+f(A-t)}{2} \mathrm{~d} t \\
& =\frac{1}{2 y}\left(\int_{A}^{A+y} f(t) \mathrm{d} t-\int_{A}^{A-y} f(t) \mathrm{d} t\right)=\frac{1}{2 y} \int_{A-y}^{A+y} f(t) \mathrm{d} t
\end{aligned}
$$

where we have take $y>0$. This proves the inequality (8) for $y>0$.
But, on the other side the function $y \mapsto F(y)$, defined by

$$
F(y)=\frac{1}{2 y} \int_{A-y}^{A+y} f(t) \mathrm{d} t
$$

is even, so that the inequality (8) holds for all y satisfying (9). This completes the proof of lemma 1.

Lemma 2. Let us suppose that $p_{i}(i=1, \ldots, n)$ are positive constants and let $x_{i}(i=1, \ldots, n)$ be given real numbers. The inequality

$$
\begin{equation*}
\frac{1}{2 y} \int_{A-y}^{A+y} f(t) \mathrm{d} t \leqq \frac{\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)}{\sum_{i=1}^{n} p_{i}} \tag{10}
\end{equation*}
$$

holds for every function f convex on $[m, M$], where m and M are given by (2),, if and only if

$$
\begin{equation*}
0<|y| \leqq K=\max _{I \subset I_{n}}\left\{\frac{\sum_{i \in I} p_{i} x_{i}-\sum_{i \in I_{n} \backslash I} p_{i} x_{i}}{\sum_{i=1}^{n} p_{i}} \min \left\{\sum_{i \in I} p_{i}, \sum_{i \in I_{n} \backslash I} p_{i}\right\}\right\} \tag{11}
\end{equation*}
$$

where A is given by (1) and where we have $I_{n}=\{1, \ldots, n\}$.
Proof. (i) The condition (11) is sufficient.
Let I_{0} be one of the subsets of the set I_{n} for which we have

$$
K=\frac{\sum_{i \in I_{0}} p_{i} x_{i}-\sum_{i \in I_{n} \backslash I_{0}} p_{i} x_{i}}{\sum_{i=1}^{n} p_{i}} \min \left\{\sum_{i \in I_{0}} p_{i}, \sum_{i \in I_{n} \backslash I_{0}} p_{i}\right\}
$$

where K is define by (11). We will introduce the following denotations

$$
\begin{equation*}
a=\frac{\sum_{i \in I_{n} \backslash I_{0}} p_{i} x_{i}}{\sum_{i \in I_{n} \backslash I_{0}} p_{i}}, \quad b=\frac{\sum_{i \in I_{0}} p_{i} x_{i}}{\sum_{i \in I_{0}} p_{i}}, \quad p=\sum_{I \in I_{n} \backslash I_{0}} p_{i}, \quad q=\sum_{I \in I_{0}} p_{i} \tag{12}
\end{equation*}
$$

Since the integral which appears in (10) is even function of the argument y, we will consider only positive values of y which satify the condition (11). Those values of y are of the form $y=\frac{b-a}{p+q} z$ where we have $0<z \leqq \min \{p, q\}$ and where a, b, p and q are defined by (12). By using the substitution $x=t a+(1-t) b$ we get

$$
\begin{aligned}
\int_{A-y}^{A+y} f(x) \mathrm{d} x & =(b-a) \int_{\frac{p-z}{p+q}}^{\frac{p+z}{p+q}} f(t a+(1-t) b) \mathrm{d} t \\
& \leqq(b-a) \int_{\frac{p-z}{p+q}}^{\frac{p+z}{p+q}}(t f(a)+(1-t) f(b)) \mathrm{d} t \\
& =2 \frac{b-a}{p+q} z \frac{p f(a)+q f(b)}{p+q}=2 y \frac{p f(a)+q f(b)}{p+q},
\end{aligned}
$$

which proves that the condition (11) is sufficient.
(ii) The condition (11) is necessary.

Let us suppose that $y>0$ is given in such a way that the inequality (10) is valid, for every function f convex on $[m, M]$. Let us prove that then it must be $y \leqq K$. Moreover, we will consider only those values of y for which $[A-y, A+y] \subset[m, M]$. Suppose that $-y \leqq c \leqq A+y$ and that the function f_{0} is defined by $f_{0}(t)=|t-c|$. Since, by our suppositions the inequality (10) holds for an arbitrary convex function f, the same inequality is valid also for the function f_{0} just defined. Define the set $J \subset I_{n}$ in the following way $J=\left\{i \in I_{n} \mid x_{i} \leqq c\right\}$.
'Then immediately follows

$$
\begin{aligned}
\frac{1}{2 y} \int_{A-y}^{A+y}|t-c| \mathrm{d} t & =\frac{1}{2 y}\left(\int_{A-y}^{c}(c-t) \mathrm{d} t+\int_{c}^{A+y}(t-c) \mathrm{d} t\right) \\
& =\frac{1}{2 y}\left(\left.\left(c t-\frac{t^{2}}{2}\right)\right|_{A-y} ^{c}+\left.\left(\frac{t^{2}}{2}-c t\right)\right|_{c} ^{A+y}\right) \\
& =\frac{1}{2 y}\left(c^{2}-A c+c y-\frac{1}{2}\left(c^{2}-A^{2}+2 A y-y^{2}\right)+\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{1}{2}\left(A^{2}+2 A y+y^{2}-c^{2}\right)-c A-c y+c^{2}\right) \\
& =\frac{1}{2 y}\left(2 c^{2}-2 A c-c^{2}+A^{2}+y^{2}\right)=\frac{1}{2 y}\left(y^{2}+A^{2}-2 A c+c^{2}\right) \\
& \leqq \frac{\sum_{i \in J} p_{i}\left(c-x_{i}\right)+\sum_{i \in I_{n} \backslash J} p_{i}\left(x_{i}-c\right)}{\sum_{i=1}^{n} p_{i}} \\
& =c \frac{\sum_{i \in J} p_{i}-\sum_{i \in I_{n} \backslash J} p_{i}}{\sum_{i=1}^{n} p_{i}}+\frac{\sum_{i \in I_{n} \backslash J} p_{i} x_{i}-\sum_{i \in J} p_{i} x_{i}}{\sum_{i=1}^{n} p_{i}}=U c+V,
\end{aligned}
$$

where

$$
U=\frac{\sum_{i \in J} p_{i}-\sum_{i \in I_{n} \backslash J} p_{i}}{\sum_{i=1}^{n} p_{i}}, \quad V=\frac{\sum_{i \in I_{n} \backslash J} p_{i} x_{i}-\sum_{i \in J} p_{i} x_{i}}{\sum_{i=1}^{n} p_{i}}
$$

Finaly we have $\frac{1}{2 y}\left(y^{2}+A^{2}-2 A c+c^{2}\right) \leqq U c+V$, i. e. we obtain

$$
\begin{equation*}
y^{2}+A^{2}-2 A c+c^{2}-2 U y c-2 V y=c^{2}-2 c(A+U y)+\left(y^{2}+A^{2}-2 V y\right) \leqq 0 . \tag{13}
\end{equation*}
$$

The condition, that the inequality is valid for all $c \in[A-y, A+y]$, is equivalent with the condition that (13) is valid for $c=A-y$ and $c=A+y$. The substitution $c=A+y$ and $c=A-y$ in relation (13) leads us to the following relations

$$
\begin{gathered}
A^{2} \mp 2 A y+y^{2}+A^{2}-2 y V+y^{2}-2 A^{2}-2 A U y \pm 2 A y \pm 2 U y^{2} \\
=2 y(y(1 \pm U)-A U-V) \leqq 0
\end{gathered}
$$

which on the basis of the supposition that y is positive gives

$$
\begin{equation*}
y \leqq \min \left(\frac{A U+V}{1+U}, \frac{A U+V}{1-U}\right) \tag{14}
\end{equation*}
$$

Denote $P(I)=\sum_{i \in I} p_{i}$ and $X(I)=\sum_{i \in I} p_{i} x_{i}$ where $I \subset I_{n}$. Using the definitions of A, U and V from (14) we obtain

$$
y \leqq \min \left\{\frac{\frac{X\left(I_{n}\right)}{P\left(I_{n}\right)} \frac{P(J)-\left(P\left(I_{n}\right)-P(J)\right)}{P\left(I_{n}\right)}+\frac{\left(X\left(I_{n}\right)-X(J)\right)-X(J)}{P\left(I_{n}\right)}}{1 \pm \frac{P(J)-\left(P\left(I_{n}\right)-P(J)\right)}{P\left(I_{n}\right)}}\right\}
$$

$$
\begin{aligned}
& =\min \left\{\frac{X\left(I_{n}\right)\left(P(J)-\left(P\left(I_{n}\right)-P(J)\right)\right)+P\left(I_{n}\right)\left(\left(X\left(I_{n}\right)-X(J)\right)-X(J)\right)}{P\left(I_{n}\right)\left(P\left(I_{n}\right) \pm\left(P(J)-\left(P\left(I_{n}\right)-P(J)\right)\right)\right)}\right\} \\
& =\min \left\{\frac{X\left(I_{n}\right)\left(2 P(J)-P\left(I_{n}\right)\right)+P\left(I_{n}\right)\left(X\left(I_{n}\right)-2 X(J)\right)}{2 P(J) P\left(I_{n}\right)},\right.
\end{aligned}
$$

$$
\left.\frac{X\left(I_{n}\right)\left(P\left(I_{n}\right)-2\left(P\left(I_{n}\right)-P(J)\right)\right)+P\left(I_{n}\right)\left(2\left(X\left(I_{n}\right)-X(J)\right)-X\left(I_{n}\right)\right)}{2 P\left(I_{n}\right)\left(P\left(I_{n}\right)-P(J)\right)}\right\}
$$

$$
=\min \left\{\frac{X\left(I_{n}\right)-X(J)}{P\left(I_{n}\right)-P(J)}-\frac{X\left(I_{n}\right)}{P\left(I_{n}\right)}, \frac{X\left(I_{n}\right)}{P\left(I_{n}\right)}-\frac{X(J)}{P(J)}\right\}
$$

$$
=\min \left\{\frac{\sum_{i \in I_{n} \backslash J} p_{i} x_{i}}{\sum_{i \in I_{n} \backslash J} p_{i}}-A, \quad A-\frac{\sum_{i \in J} p_{i} x_{i}}{\sum_{i \in J} p_{i}}\right\}
$$

$$
\sum_{i \in I_{n} \backslash J} p_{i} x_{i} \sum_{i \in J} p_{i} x_{i}
$$

$$
=\frac{\sum_{i \in I_{n} \backslash J} p_{i} \sum_{i \in J} p_{i}}{\sum_{i=1} p_{i}} \min \left(\sum_{i \in J} p_{i}, \sum_{i \in I_{n} \backslash J} p_{i}\right)
$$

$$
\leqq \max \left\{\frac{\sum_{i \in I} p_{i} x_{i} \sum_{i \in I}^{\sum_{i \in I} p_{i}}-\frac{\sum_{i} x_{i}}{\sum_{i \in I_{n} \backslash I} p_{i}}}{\sum_{i=1}^{n} p_{i}} \min \left(\sum_{i \in I} p_{i}, \sum_{i \in I_{n} \backslash I} p_{i}\right)\right\}=K,
$$

which proves the lemma.
Using our lemmas 1 and 2 we directly obtain the following theorem:

Theorem 2. Let us suppose that the function f is convex on $[m, M$], where m and M are given by (2). Then the inequalities (3) are valid for every such a function if and only if the condition (11) is satisfied.

The proof of theorem 2 can also be obtained by using the method of positive linear operators on a cone of convex functions.

Remark. It can be easily shown that there exists at least one $I \subset I_{n}$ such that the maximal value which appears in (11) is strictly positive.

REFERENCES

1. P. M. Vasić, I. B. Lacković: On an inequality for convex functions. These Publications № 461 - № 497 (1974), 63-66.
2. P. M. Vasić, I. B. Lacković: Some complements to the paper: "On an inequality for convex functions"‘. Ibid. № 544-№ 576 (1976), 59-62.
3. A. Lupaş: A generalizations of Hadamard's inequalities for convex functions. Ibid. № 544-№ 576 (1976), 115-121.
4. P. M. Vasić, I. B. Lacković: Notes on convex functions I: A new proof of Hadamard's inequalities Ibid. № 577-№ 598 (1977), 21-24.
5. I. B. Lacković, M. S. Stanković: On Hadamard's integral inequalities for convex functions. Ibid. ㅅo 412-№ 460 (1973), 89-92.
6. I. B. Lacković: O nekim nejednakostima za konvenksne funkcije. Matematička biblioteka, sv. 42. Beograd 1959, pp. 138-141.

Zavod za primenjenu matematiku
Elektrotehnicki fakultet
11000 Beograd, Jugoslavija

NOTE O KONVEKSNIM FUNKCIJAMA IV: O HADAMARDOVIM NEJEDNAKOSTIMA ZA TEZ̈INSKE ARITMETIČKE SREDINE

P. M. Vasić, I. B. Lacković, D. M. Maksimović

U radu su određeni potrebni i dovoljni uslovi pod kojima važe nejednakosti (3) za proizvoljnu konveksnu funkciju definisanu na [m, M] gde su m i M definisani sa (2). Potrebni i dovoljni uslovi su dati sa (11). Osnovni rezultat rada je sadržan u teoremi 2.

[^0]: * Presented June 23, 1980 by D. S. Mitrinović.

