Univ. Beograd. Publ. Elektrotehn. Fak.

Ser. Mat. Fiz. No 678 - № 715 (1980), 173-174.

710. A NOTE ON A PAPER OF H. GUPTA CONCERNING POWERS OF TWO AND THREE*

W. Narkiewicz

The following question of P. Erdös was considered in [1]: does there exist an integer $m \neq 0,2,8$ such that 2^{m} is a sum of distinct povers of 3 ? It was shown there that there is no such integer in the interval $(8,4734)$. The aim of this note is to observe that a simple counting argument shows that there cannot be very many such integers m. More precisely we prove the following evaluation:

Theorem. If $N(T)$ denotes the number of nonnegative integers $m \leqq T$ with the property that 2^{m} can be written as a sum of distinct powers of 3 , then

$$
N(T) \leqq 1.62 T^{\log 2 / \log 3}
$$

and in particular the density of the set of such m's is zero.
Proof. We only push further the analysis in the proof of theorem 4 of [1]. Observe first that if we have

$$
\begin{equation*}
2^{m}=3^{m_{0}}+3^{m_{1}}+\cdots+3^{m_{s}} \tag{1}
\end{equation*}
$$

with $m_{0}<m_{1}<\cdots<m_{s}$ then necessarily $m_{0}=0$. Now let k be any positive integer and reduce the equality (1) $\left(\bmod 3^{k}\right)$. Then the terms with $m_{j} \geqq k$ will vanish and the right-hand side of (1) will take one of the values

$$
1+\varepsilon_{1} \cdot 3+\varepsilon_{2} \cdot 3^{2}+\cdots+\varepsilon_{k-1} \cdot 3^{k-1}
$$

where each ε_{i} equals 0 or 1 . Thus we have 2^{k-1} possibilities for the value of $2^{m}\left(\bmod 3^{k}\right)$ and as 2 is a primitive root for every power of 3 we see that there are only 2^{k-1} residue classes $r_{1}, \ldots, r_{2 k-1}\left(\bmod 2 \cdot 3^{k-1}\right)$ in which m can lie. As the number of nonnegative integers lying in an arithmetical pro-

[^0]gression of difference d and not exceeding T is at most equal to $x / d+1$ we obtain that for any fixed k the inequality
$$
N(T) \leqq \sum_{j=1}^{2 k-1} \#\left\{n \leqq T: n \equiv r_{j}\left(\bmod 2 \cdot 3^{k-1}\right)\right\} \leqq \frac{2^{k-1}}{2 \cdot 3^{k-1}} T+2^{k-1}
$$
holds. Choosing now $k=\left[\frac{\log (3 / 2)+\log T}{\log 3}\right]$ we obtain our assertion.

REFERENCE

1. H. Gupta: Powers of 2 and sums of distinct powers of 3. These Publications № 602-№ 633 (1978), 151-158.

Mathematical Institute,
Wroclaw University,
Plac Grunwaldzki 2/4,
Pl-50-384-Wroclaw, Poland.

JEDNA NOTA O ČLANKU H. GUPTA

W. Narkiewicz

U radu je dokazana teorema koja glasi:
Ako $N(T)$ označava broj nenegativnih brojeva $m \leqq T$ sa osobinom da se 2^{m} može napisati kao zbir razlicitih potencija broja 3, tada je $N(T) \leqq 1.62 T^{\operatorname{Tog} 2 / \log { }^{3} .}$

[^0]: * Received August 31, 1980 and presented September 10, 1980 by D. S. Mitrinović.

