Univ. Beograd. Publ. Elektrotehn. Fak.

${ }^{-}$Ser. Mat. Fiz. No 678-N2 715 (1980), 170-172.

709. SOME QUADRATURE FORMULAS FOR ANALYTIC FUNCTIONS*

Dobrilo Đ. Tošić, Draško Sotirovski, Jelica Draškič-Ostojić

In [1] the following formula for the numerical quadrature of analytic functions was derived:

$$
\begin{equation*}
\int_{-1}^{1} f(z) \mathrm{d} z=A f(0)+B(f(k)+f(-k))+C(f(i k)+f(-i k))+R, \tag{1}
\end{equation*}
$$

where

$$
A=2\left(1-\frac{1}{5 k^{4}}\right), \quad B=\frac{1}{6 k^{2}}+\frac{1}{10 k^{4}}, \quad C=-\frac{1}{6 k^{2}}+\frac{1}{10 k^{4}} \quad(k>0)
$$

and where the error-term was given by the expansion

$$
R=\left(-\frac{2}{3 \cdot 6!} k^{4}+\frac{2}{7!}\right) f^{(6)}(0)+\left(\frac{2}{9!}-\frac{2}{5 \cdot 8!} k^{4}\right) f^{(8)}(0)+\ldots
$$

For $k=1$ Birkhoff-Young's ($B Y$) formula was obtained [2]; for $k=\sqrt{0.6}$ the Gauss-Legendre ($G L$) formula in three points was obtained since $C=0$ for that case; for $k=\sqrt[4]{3 / 7}$ the maximum accuracy formula, refered to as $M F$ in [1] (modified Birkhoff-Young's formula), was derived.

Formula (1) was derived under the assumption of equal absolute values of arguments of function f, i.e. that the corresponding points fall onto the center and vertices of a square in the complex plane. Notice that (1) can be derived using the method of undetermined coefficients, i.e. under the condition that $R=0$ for as high degree polynomials as possible. A more general problem can be formulated as follows:

Determine parameters A, B, C, x_{1}, x_{2} in the formula

$$
\begin{equation*}
\int_{-1}^{1} f(z) \mathrm{d} z=A f(0)+B\left(f\left(x_{1}\right)+f\left(-x_{1}\right)\right)+C\left(f\left(i x_{2}\right)+f\left(-i x_{2}\right)\right)+R \tag{2}
\end{equation*}
$$

where the error-term R is to be annuled for polynomials of the maximum possible degree.

[^0]For power functions of odd degree: z, z^{3}, z^{5}, \ldots the error-term R is annuled. If we substitute functions $1, z^{2}, z^{4}, z^{6}$ and z^{8} for f in (2), we obtain the following system:

$$
\frac{A}{2}+B+C=1, \quad B x_{1}^{2}-C x_{2}^{2}=\frac{1}{3}, \quad B x_{1}^{4}+C x_{2}^{4}=\frac{1}{5},
$$

$$
\begin{equation*}
B x_{1}{ }^{6}-C x_{2}^{6}=\frac{1}{7}, \quad B x_{1}^{8}+C x_{2}^{8}=\frac{1}{9} . \tag{3}
\end{equation*}
$$

Remark 1. Coefficients of the MF formula are solutions of the first four equations of this system, where $x_{1}=x_{2}$.

System (3) has no real solutions. One of its solutions corresponds to the $G L$ formula in five points, when A, B, C, x_{1} are real and x_{2} purely imaginary, i.e. when the points are chosen on the real axis.

Solving the first four equations as a system, where it is the most suitable to choose x_{2} as a parameter, we get:

$$
\begin{array}{ll}
x_{1}=\left(\frac{\frac{1}{5} x_{2}^{2}+\frac{1}{7}}{\frac{1}{3} x_{2}{ }^{2}+\frac{1}{5}}\right)^{1 / 2}, & B=\frac{\frac{1}{3} x_{2}^{2}+\frac{1}{5}}{x_{1}{ }^{2}\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right)}, \\
C=\frac{B x_{1}{ }^{2}-\frac{1}{3}}{x_{2}{ }^{2}}, & A=2(1-B-C) .
\end{array}
$$

The error-term can be given in the form of TAYLOR series at $z=0$, where the lead term R_{1} is given by

$$
\begin{equation*}
R_{1}=\frac{2}{8!}\left(\frac{1}{9}-B x_{1}^{8}-C x_{2}^{8}\right) f^{(7)}(0) \tag{4}
\end{equation*}
$$

Parameter x_{2} can be determined so that the coefficient multiplying $f^{(7)}(0)$ is minimized. This coefficient is a monotonically increasing function of x_{2}. When x_{2} tends to $+\infty$, then $C \rightarrow 0, x_{1} \rightarrow \sqrt{0,6}, B \rightarrow \frac{5}{9}, A \rightarrow \frac{8}{9}$ and the $G L$ formula in three points is obtained.

It is convenient to take $x_{2}=0.1$. Then using (3) we get

$$
\begin{array}{ll}
A=11.58360728, & B=0.3950864972, \\
C=-5.186890135, & x_{1}=0.8440451279, \\
R_{1}=4.6338 \cdot 10^{-7} \cdot f^{(7)}(0) . &
\end{array}
$$

This error-term is about 2.8 times smaller than the corresponding term in $M F$. For $x_{2}<0.1$ the absolute values of cosfficients A and C increase. Therefore the obtained formulas are not suitable due to a possible increasing of roundoff errors.

By an analogous procedure we can develop the more general formula which includes $B Y$ and $M F$, as follows:

$$
\begin{align*}
\int_{-1}^{1} f(z) \mathrm{d} z=A f(0) & +B\left(f\left(x_{1}\right)+f\left(-x_{1}\right)\right)+C\left(f\left(i x_{1}\right)+f\left(-i x_{1}\right)\right) \tag{5}\\
& +D\left(f\left(x_{2}\right)+f\left(-x_{2}\right)\right)+R .
\end{align*}
$$

By setting in (5) $f(z)=1, z, z^{2}, \ldots, z^{8}$, we obtain the system:

$$
\begin{array}{ll}
\frac{A}{2}+B+C+D=1, & B x_{1}^{2}-C x_{1}^{2}+D x_{2}^{2}=\frac{1}{3}, \\
B x_{1}^{4}+C x_{1}^{4}+D x_{2}^{4}=\frac{1}{5}, & B x_{1}^{6}-C x_{1}^{6}+D x_{2}^{6}=\frac{1}{7}, \\
B x_{1}^{8}+C x_{1}^{8}+D x_{2}^{8}=\frac{1}{9} . &
\end{array}
$$

For example, if $x_{1}=1$, we get

$$
\begin{array}{ll}
x_{2}=6.831300511 \cdot 10^{-1}, & A=7.836734695 \cdot 10^{-1}, \\
B=8.809523810 \cdot 10^{-2}, & C=-1.731601731 \cdot 10^{-2}, \\
D=5.217996289 \cdot 10^{-1} . &
\end{array}
$$

For these coefficients using (5) we obtain in a simple case $I=\int_{-1}^{1} e^{x} \mathrm{~d} x$ ≈ 2.350402393, with the error about $5.77 \cdot 10^{-9}$.

Remark 2. It is of interest to generalize formulas (2) and (5), by increasing the number of points.

REFERENCES

1. D. $Đ$. Tošić: A modification of the Birkhoff-Young quadrature formula for analytical functions. These Publications № 602-№ 633 (1978), 73-77.
2. G. Birkhoff and D. Young: Numerical quadrature of analytic and harmonic functions.
J. Math. and Phys. 29 (1950), 217-221.

Elektrotehnički fakultet,
11000 Beograd, Jugoslavija

NEKE KVADRATURNE FORMULE ZA ANALITIČKE FUNKCIJE

D. Đ. Tošić, D. Sotirovski, J. Draškić-Ostojić

U radu su izvedene dve kvadraturne formule za integraciju analitičkih funkcija. U ovim formulama se pojavljuju argumenti koji ne pripadaju segmentu integracije na realnoj osi, već su cisto imaginarni. Dobijene formule predstavljaju uopštenja do sada poznatih formula. \mathbf{U} radu je sugerirana dalja generalizacija.

[^0]: * Received June 1, 1980 and presented September 9, 1980 by Yudell L. Luke.

