
UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK.
Ser. Mat. Fiz. No 678-,NQ 715 (1980), 161-169.

708. VERTEX MINIMAL PLANAR CYCLIC GRAPHS*

Dragan Marusic

ABSTRACT.Let c (k) (c. (k» be the least number of vertices of a planar (planar
connected) graph whose automorphism group is the cyclic group of order k. If k

r

is odd and if k = PIal. . . p,ar, PI' . . . ,Pr being primes then c (k) = 3 2: Piai and
i=l

c. (k) ~ c (k) for r ~ 1 while c. (k) = c (k) + 1 for r> 1. It is conjectured that a si-
milar result holds for k even.

1. Introduction. By a graph we mean a finite undirected loopless graph without
multiple edges.

In ] 938 R. FRUCHT showed that for any finite froup A there is a graph
whose automorphism group is isomorphic to A. This result implied the so
called extremum problems: given a finite group A what is the least number of
vertices or edges that a graph can have and have automorphism group iso-
morphic to A?

In 1963 L. R. MERIWETHER(unpublished, see [5] or [7]) completely
answered the vertex extremum problem for cyclic groups of all finite orders.

In this paper we shaH be mainly concerned with a modified form of
the above vertex extremum problem imposing an additional constraint upon the
planarity of the graph in question.

Let us call a graph k-cyclic if its automorphism group is isomorphic
to the cyclic group of order k. Let c (k) (c* (k» denote the number of verti-
ces of a vertex minimal planar (planar connected) k-cyclic graph, that is c (k)
(c* (k» is the least number of vertices for which a planar (planar connected)
k-cyclic graph exists.

The main aim of this paper is to find the exact values of c* (k) and
c (k) or at least upper bounds.

2. Star polygons and chains. By Zn we shaH denote the set of integers modulo
n. G wiH always denote a graph and GC, V(G), E(G), Aut G will denote the
complement, the vertex set, the edge set, the automorphism group of G, respectively.
The subgraph of G induced by a vertex subset X will be denoted by X*. Let X and Y
be any two desjoint subsets of V (G), by L (X, Y) we shall denote the subgraph
of G with the vertex set XUY and the edge set E(XU Y)* )"'-E(X*)UE(Y*).

*
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Let A be any subgroup of Aut G. A nonempty subset WC;:;V(G) is an
A-orbit if f(W)=W for each fEA and if for every nonempty proper subset
U of W there exists at least one fEA such that f(U)¥-U. Let C be a union
of some A-orbits. Then each fEA induces an automorphism of C* which we
shall denote by fe. By (fp... , fr) we shall denote the subgroup of Aut G
generated by the automorphisms f!, . . . , fr'

An automorphism g of G is called cyclic if gE <f) for some auto-
morphism f of maximum order of G and noncyclic if it is not cyclic.

Definition 2.1. A graph G is an n-star polygon if [V(G) I=n and if Aut G
contaim a cyclic permutation of V(G).

The automorphism group of an n-star polygon, n ~ 3 contains the dihedral
group Dn' For a given star polygon G we define D (G) to be the corresponding
dihedral group if [V(G)I~3 and the whole group if [V (G) 1<3.

Definition 2.2. A bipartite graph with a bipartition (U, W) ij an n, m-chain
111 U 1= n ~ m = I W I and if it has an automorphism f such that U and Ware
<f)-orbits.

Clearly, n. s = m. t, where sand t are degrees of vertices in U and W
respectively. By B (n, m, s), n ~ m ~ s ~ 0 we shall denote an n, m-chain whose
n vertices have degree sand m vertices degree n. s/m (Note that s>O implies
s~m/(n, m) where (n, m) is the g. c. d. of nand m).

We call an n, m-chain divisible if m divides n. We shall use FRucHT's
notation [3] for star polygons!) and divisible chains.

The next result is immediate:

Proposition 2.3. Let f be an automorphism of a graph G. Then there exists a
decomposition of G into star polygons and chains such that:

(i) every star polygon is induced by some <f)-orbit,

(ii) every chain is induced by some pair of <f)-orbits.

3. Cyclic graphs. Since K2 is 2-cyclic and therefore c (2) = c* (2) = 2, interesting
results only arise for k-cyclic graphs, k ~ 3. Let G be any such graph. By an
orbit we shall mean an Aut G-orbit, by f we denote a generator of Aut G.

For any two orbits X, Y, say IXI~I Yj, the number s(X, Y)=s(Y, X)

equals s iff L(X, y)=B(IXI, IYI,s). Two orbits X, Yare adjacent (or
neighbours) if s(X, Y»O. A long orbit is an orbit of cardinality >1.
By 2 (G) we shall denote the set of all long orbits. By N(x) (N(X») we shall
denote the set of neighbours (long neighbours) of a vertex x (orbit X). Further-
more for a given nonempty set of orbits '(5 let N ('(5) = U N (Y)"'-. '(5.

Y='(5
---

1) For techinical reasons, star polygons, when mentioned in the text, will be given by
a square instead by a circle.
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Definition 3.1. An orbit is m a xi m a I if its cardinality is greater than 2 and
greater than the cardinality of any of its neighbours. An orbit is n ear Iy m a x i-
m a I if its cardinality is greater than 2, no neighbour has greater cardinality
and exactly one neighbour has the same cardinality.

Definition 3.2. An u"ordered pair of orbits (X, X') is said to be d i vis i b I e if:

(i) YEN({X, X'}) ~ L (X, Y) and L(X', Y) are divisible,

(ii) Y, ZEN({X, X'}) ~ L (Y, Z) is divisible.

Every orbit of maximum cardinality in N({X, X'}) is called a leader of (X, X').

Definition 3.3. An orbit X is d iv is i b I e if the pair (X, X) is divisible. Y is
a leader of X if it is a leader of (X, X).

Lemma 3.4. Let X, Y be any two orbits such that either s (X, Y);£ 2 or s (X, Y) ~
min{IXI, IYI}-2. For every automorphism g'ED(X*) we can find an auto-
morphism g" ED (Y*) such that there is an automorphism g of (XU Y)* with
gx=g', gy= g".

Proof. We can put X = {x,f(x), ... ,fm-I (x)}, Y = {y,f(y), ... , r-I (y)},
s = s (X, Y) where m = IX I, n = IY I, and y is chosen to be adjacent to x when
1 ;£s;£ 2, nonadjacent to x when 1;£ min {n, m} - s ;£ 2 and an arbitrary vertex
otherwise. If g' is cyclic then there exists an integer r such that g' = fx. In
that case put g" = ff. If g' is noncyclic then there exists an integer r such that
g' maps according to the formula: g' (P (x» =f'-j (x) (j = 0, 1, . . . , m - 1). If
s;£1 or min{m,n}-s;£1 then let g"(P(y»=f'-j(y) (j=0, I,..., n-l). If
s = 2 (min {m, n} - s = 2) then let y' = fq (y) be the vertex having the minimum
positive exponent q in Y(jN(x) (Y"",N(x». Then let g"(P(y»=fq+r-j(y),
(j =~0, I, . . . , n - I).

Definition 3.5. A set of orbits '6 is s to u t if '6 ~::t (G), N ('6) = 0 and if
for every proper nonempty sub:.et '6' C '6 it follows that N ('fl') =1=0.

It is not hard to see that ::t (G) is partitioned into stout disjoint subsets.

Definition 3.6. A set of orbits '6 is cy cl i c if '6C;;::t (G) and if either

(i) '6= {X, Y} and 3;£s(X, Y);£min{IX!, I YI}-3, or
(ii) '6 = {XI' ... , Xr}, r~3 and seX!, X2)~ .., , s(X" X1)~ I.

Proposition 3.7. Every stout set which contains at least one orbit of cardinality
>2 contains a cyclic subset.

Proof. Let '6 be a stout set which contains an orbit of cardinality >2,
say X and let C denote the union of all orbits in '6. Assume that '6 does
not contain a cyclic subset. Take a noncycIic automorphism gED (X*). It ge-
nerates a noncycIic automorphism g' of C* such that g'x =g. Namely, since '6
contains no cyclic subset we can apply 3.4. step by step starting with the orbit
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X and the automorphism g and constructing g' first on all long neighbours of
X, then on all orbits in N(N(X») etc. No orbit is met twice and g' is uniquely
determined. Therefore C* is not cyclic and neither can be G since the permu-
tation h given by:

(i) hc=g',

(ii) hV(G)".c= id

is a noncyclic automorphism of G. This contradiction proves 3.7.

Corollary 3.8. :z: (G) contains at least one cyclic subset.

Proof. Since G is k-cyclic for some k ~ 3 it follows that .2 (G) contains

at least one orbit of cardinality >2. The rest follows from 3.7.

Proposition 3.9. Let X be a maximal divisible orbit of cardinality n. Then X*

contains a subgraph isomorphic to the star polygon !_n(r) I, r =1=0 (mod m) where
m is the cardinality of a leader of x.

Proof. Since X is maximal and therefore its cardinality> 2 it follows by
3.7. that N(X)ci=0 and hence X has a leader, say Y of cardinality m. X de-
composes into q = n/m <fm)-orbits: Xo, . . . , Xq-l (of cardinality m each). Since
X is divisible and Y its leader and also an <fm)-orbit it follows that for any
two vertices u, v belonging to the same <fm)-orbit Xi the sets N(u)"'X and

N (v)"'-X are equal. If X* doesn't contain a subgraph isomorphic tol n (r) I,

r=l=O (mod m) then the chain L (X;, Xj) (for any two distinct i, j) is totally
disconnected and therefore the permutation g given by:

(i) gxo = go' an arbitrary automorphism of order 2 of Xo*,

(ii) gv (G)"Xo= id

is a noncyclic automorphism of G, a contradiction.

Proposition 3.10. Let (X, X') be a divisible pair of nearly maximal adjacent orbits
such that s (X, X') < 3 and let n = IX I= Ix' I. Then (XU X')* contains a subgraph

homeomorphic to the star polygon In (r) I, r=l=O(mod m) where m is the cardina-
lity of a leader of (X, X').

Proof. It follows by 3.7. that N({X, X'})ci= 0 and therefore (X, X') has
a leader, say Y of cardinality m. X and X' decompose into q = n/m <fm)-orbits
(each): Xo' ... , Xq-l; Xo, ... , X~-i' respectively. The subscripts are chosen
in such a way that L (X;, Xi) (i = 0, . . . , q - 1) contains a sub graph isomorphic
to mK2.
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Case 1: s (X, X') = 1. If neither X* nor X' * contains a subgraph isomorphic to

In (r) I such that r:;<':O(mod m) then for any two distinct i, j the chains L (Xi, X;)

and L (Xi, Xj) are totally disconnected. The p~rmutation g given by:

(i) gxoux'o = go' an arbitrary automorphism of order 2 of (Xo U X 0)*'
(ii) gy (G)',(XoUX'o)= id

is a noncyc1ic automorphism of G, a contradiction.

Case 2: s (X, X') = 2. There is an integer r such that L (X, X') equals

and is therefore homeomorphic to In(r)l. If r:;<':O(modm) then 3.10. is true.
If r ==°

(mod m) then either X* or X' * contains a subgraph isomorphic to

In (t) I, t:;<':O(mod m) for otherwise we could find a noncyclic automorphism

of G as in Case 1. This completes the proof of 3.10.

4. Planar cyclic graphs.

Definition 4.1. The cor n e r s of a graph homeomorphic to K3.3 are the six
vertices of degree 3.

From EULER'S formula we derive this necessary condition for planar
graphs with e edges, w vertices and each face surrounded with at least a edges:

(1) a (w- 2) ~(a- 2) e.

Lemma 4.2. Every chain B (n, n, 3), n ~ 3 odd, is nonplanar.

Proof. Assume that there exists a planar chain L = B (n, n, 3) for some
odd n ~ 3. Let (X, Y) be its bipartition. L contains only even circuits. If it
doesn't contain a 4-circuit then (1) implies 12 (n - 1)~ 12n which is impossible.
Thus L must contain a 4-circuit, say with vertex set {x, y, xl' YI} where x, XlEX.
y, YI E Y. Let the other neighbours of x and Xl be Yz and Y3 respectively. There
is an automorphism h of L which takes X into Xl and fixes X and Y set-wise
and such that every <h)-orbit has cardinality ~ 3. If Yz = Y3 there is a vertex
Xz differenet from X and Xl such that its neighbours are Y, Y1 and yz. Hence
{x, xl' xZ' Y, Yl' YZ}*=K3.3 and L nonplanar, a contradiction. Therefore YZ#Y3'
Since h: {y, YI

'
Yz}- {y, Yl' Y3} and since every <h)-orbit has cardinality ~ 3

one of the vertices Y and YI must be mapped into Y3' e.g. h (Yj) = Y3' This
implies h(y)=yl' h(yz)=Y. Therefore N(x)={h-1(y),y, h(y)} and the neigh-
bours' set of any other vertex of L can be written in an analogous way. It
follows that L contains the paths (h (x), hZ(y), . . . , h-z (x), h-1 (y», (h (y),
hZ (x), . . . , h-z (y), h-1 (x» and therefore the vertices x, h (x), h-l (x), Y, h (y),
h-l (y) are the corners of a graph homeomorphic to K3.3 and L nonplanar, a
contradiction which proves 4.2.
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Let n>m>q;;;;3 be odd numbers such that m and q divide nand q does
not divide m. By G (n, m, q) we shall denote the graph

Let n>m;;;;3 be odd numbers such that m divides n and let r*,O(modm).
By H(n, m, r) we shall denote the graph

Lemma 4.3. G (n, m, q) is nonplanar.

Proof. Let V(G(n, m, q»)={xi:iEZn}U{wi:iEZm}U{wi:iEZq} such that
E(G (n, m, q») = {(xi' Yi) :j=,i (mod m)} U {(xi' Wj):.i=i (mod q)}. Since G (n, m, q)
contains the paths: (Yo' xo, wo), (Yo' xm' wm), (Yo, xzm, WZm), (Yq, Xq, wo)'
(Yq, xm+q' wm), (Yq. xzm+qwzm), (YZq, XZq, wo)' (YZq, xm+Zq' wm)' (YZq, xzm+zq' WZm),
the vertices Yo, Yq, Yzq, wo' wm' wZm are the corners of a graph homeomorphic
to K3,3 and thus G (n, m, q) is nonplanar.

Lemma 4.4. H(n, m, r) is nonplanar.

Proof. Let V (H(n, m, r») = {Xi: i E Zn} U {Yi : i E Zm} such that
E(H(n, m, r») = {(Xi' XiH): i E Zn} U {(Xi' Yj) :I==i (mod m)}. Since H(n, m, r)
contains the paths: (Yo, xo), (Yo' xm), (Yo' XZm), (y" Xr, xu), (y" XmH' xm)'
(Yr' xZm+T' xzm)' (Y-" X-r' xo)' (Y-T' Xm-r' xm), (Y-r, xzm-r' xzm), the vertices
xo. Xm, Xzm, Yo, Y" Y-r are the corners of a graph homeomorphic to K3.3 and
therefore H (n, m, r) is nonplanar.

Let G be a planar k-cyclic graph for some odd k ~ 3. By an orbit we
shall mean an Aut G-orbit.

Proposition 4.5. Let X, Y be any two adjacent orbits. Then L (X, Y) is divisible
and seX, Y)~2.

Proof. Let IXI=n, I YI=m. If m=n then L(X, Y) is divisible. If m=f=n,
say m<n, and m doesn't divide n then (since m and n are odd) e=n/(n, m»d=
= m/(n, m) ~ 3. Therefore L (X, Y) contains a nonplanar subgraph Ke,d' a contra-
diction. Thus m divides nand L (X, Y) is divisible. It follows that L (X, Y)
contains a chain B (m, m, s (X, Y») and therefore by 4.2, s (X, Y) ~ 2,

Proposition 4.6. No orbit is maximal.

Proof. Suppose that there exists a maximal orbit X. We claim that X is
divisible. If it isn't then there exist Z, WEN (X), say IZi>! WI, such that IWI
do,'sn't divide IZ I. By 4.5. it follows that IZ I and IW I divide IX I and the-
refore (XUZU W)* contains the subgraph G (IX I, IZ I, IW I)which is by 4.3.
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nonplanar, a contradiction. Thus X is divisible. Since N(X)-=j=;0 it follows that
X has a leader, say Y of cardinality ~ 3.. By 3.9. there exists an integer r such
that (XUY)* contains the subgraph H(IXI, IYI, r) which is by 4.4. nonplanar,
a contradiction.

Proposition 4.7. Two nearly maximal orbits are not adjacent.

Proof. Suppose that there exist two nearly maximal adjacent orbits X and
X'. Clearly IXI=!X/I and by 4.5. it follows that l~s(X, Y)~2. We claim
that (X, X') is divisible. If it isn't then there exist two orbits Z, WEN (X, X'),
say IZI>! WI, such that! WI doesn't divide IZI. Therefore (XUX'UZUW)*
contains a subgraph homeomorphic to G (IX I, IZ I, IW I) which is by 4.3.
non planar. Thus (X, X') is divisible. Let Y be a leader of (X, X'). By 3.10. it
follows that there is an integer r such that (XUX' U Y)* contains a subgraph
homeomorphic to H (IX I, IY I, r) which is by 4.4. non planar , a contradiction.

Proposition 4.8. There exist integers kl' . . . , k" t ~ I, such that:

(2) the I. c. m. [kl' . . . , kt] equals k and for each iE{I, . .. , t} there

are at least three orbits Xi, X;' X/, of cardinality ki.

Proof. Let kl be the maximum of all orbits' cardinalities. It follows by
4.6. and 4.7. that there must exist at least three orbits of cardinality kl, say

Xl' X/' xt. If kl =k then 4.8. is true. If not then (since the I. c. m. of all
orbits' cardinalities must be k) there exists at least one orbit of cardinality ~ot
dividing kl and therefore not in N ({Xl' X/' X"}). Let k2 be the maximum of
cardinalities of all such orbits. Then again by 4.6. and 4.7. there exist at least
three orbits of cardinality k2, say X2, Xz', X2". If [kl' k2]=k then 4.8. is
proved. If not we go on with the same argument as long as for some t the
I. c. m. of kl' k2, ... , kt equals k.

5. Numbers c (k) and c* (k).

Theorem 5.1. Let k ~ 3 be an odd number and let k = Plat. . . Prar be its prime
powers factorisation. Then:

r
(i) c (k) = 3 2 pti,

i~l

(ii) c*(k)=c(k) if r= 1 and c*(k)=c(k)+1 if r>1.

Proof. Let G (m), m any integer ~ 3, denote the graph
1
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Clearly G (m) is planar and m-cyclic. Therefore the union U(k) = G (P1a1)U
. . . UG(p,ar) is a planar k-cyclic graph. Let G be any planar k-cyclic graph

and let k1, . . . , kt b~ the integers satisfying (2). It is not difficult to convince
t r

oneself that L ki ~ L Piai and that the equality holds iff k/s are the prime
i=l i=l

powers Piahs. Hence IV(G)I~V(U(k»1 and U(k) is vertex minimal. This
proves (i). If r = 1 th;:n it is also connected. If r> 1 then we need another
vertex to "make" it connected. We join this vertex by an edge to all vertices
that have degree 5 in U (k). The so defined graph is then vertex minimal
planar connected k-cyclic and this completes the proof of 5.1.

Let H(n), n any even number, denote the graph

when n ~ 4 and Kz when n = 2. Clearly H (n) is planar n-cyclic. Since R. L. MERIWE-
THERproved that a 4-cyclic graph has at least 10 vertices it follows that H (2) (H (4»
is vertex minimal planar 2-cyclic (4-cyclic). Our conjecture is that the same is
true for any H (2a), a ~ 1. (This is very likely to be true since it was pointed
out in a letter to the author by L. BABAI that the graph in Fig. 1. is nonpla-
nar which was the toghest obstacle in one's attempt to prove the above stated
conjecture). Since all these graphs are connected our conjecture extends to say
that H (2a), a ~ 1, is also vertex minimal planar connected 2a-cyclic.

When k is an even number but not a power of 2, say k = 2a. m, a ~ 1,
m odd> 1, then we conjecture that H(2a)UU(m) is vertex minimal planar
k-cyclic. When a = 1 we get the vertex minimal connected graph by joining all
vertices of degree 5 in U (m) and the two vertices of H (2) to a new vertex.
When a> 1 this construction doesn't give us a planar graph and we conjecture
that we have to use the graph G (2a) instead of H (2a).

n/2

i '# n/4 .n even> 4

Fic. 1.



-f\.
" Ii N'
10

"
f\.

f\.
"0. 10

M N
IIII
C!.-o.

Vertex minimal planar cyclic graphs 169'

6. A conjecture about edge minimality. In [1] R. FRUCHT and I. Z. BOUWER
conjectured that for every prime p the graphs in Fig. 2. are edge minimal
pa-cyclic. It can be seen that this is true and that this is a quite straightforward
consequence of 3.7, 3.9, 3.10. However, as was mentioned by L. V. QUINTAS.
(p;:rsonal correspondence to the author), the edge extremum problem 'or cyclic-
groups has finally been solved, a solution is to appear in a joint paper by
L. V. QUINTASand DON Mc CARTHY.

Fig. 2.
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CYORNO MINIMALNI PLANARNI CIKLlCKI GRAFOVI

D. Maruiic

Neka je c (k) (c* (k)) najmanji broj takav da postoji planaran (planaran povezan) gray

sa c (k) (c* (k)) cvorova c;ja je grupa automorfizama cikIicka grupa reda k. Ako je k neparno
r

i k =p{'1 . . .Pr"r, gde su PI' . . . , Pr prosti brojevi, tada je c (k) ~ 3 L: Pi"i i c* (k) = c (k) za-
i~1

r~l, dok c*(k)~c(k)+1 za r>1.


