UNIV. BEOGRAD, PUBL. ELEKTROTEHN. FAK. Ser. Mat. Fiz. No 678-No 715 (1980), 19-23.

681. THE SYMMETRIC, LOGARITHMIC AND POWER MEANS*

A. O. Pittenger

1. T. 1. T. 1. T.

 \mathbf{h}

Let L(x, y) denote the logarithmic mean of positive x and y:

(1)
$$L(x, y) = \frac{x-y}{\log(x) - \log(y)}$$
 $(x \neq y).$

In two recent notes [1] and [3], the relationship of L(x, y) to the *p*-th arithmetic or power mean

(2)
$$M_p(x, y) = \left[\frac{1}{2}(x^p + y^p)\right]^{\frac{1}{p}}, p \neq 0.$$

was discussed and proofs of the following results established. Let $M_0(x, y)$ denote the geometric mean $\sqrt{x \cdot y}$. Then for positive $x \neq y$

(3)
$$M_0(x, y) < \frac{1}{2} (x^{3/4} y^{1/4} + x^{1/4} y^{3/4}) < L(x, y) < M_p(x, y),$$

provided $\frac{1}{3} \leq p$. The third inequality in (3) is sharp in the sense that if

$$0$$

for some, but not all, positive x and y.

The sharpness of p = 1/3 was shown in [3], and it would be interesting to obtain an analogous result for the lower bound. At this point cognoscenti of HARDY, LITTLEWOOD and POLYA [2] may recognize the second expression in (3) as an example of the symmetric mean of positive x and y:

(4)
$$S_{\delta}(x, y) = \frac{1}{2} \left(x \frac{1+\sqrt{\delta}}{2} \cdot y \frac{1-\sqrt{\delta}}{2} + x \frac{1-\sqrt{\delta}}{2} \cdot y \frac{1+\sqrt{\delta}}{2} \right),$$

where we have used the rather unnatural form of the exponent for reasons which will become clear below.

* Received April 1976. Presented July 12, 1977 by P. S. BULLEN.

19

It is shown in [2: II. 46, 47, 48] that S_8 is increasing in δ and that for $x \neq y$

$$M_0(x, y) < S_{\delta}(x, y) < M_1(x, y)$$

provided $0 < \delta < 1$. Since the second inequality in (3) involves $S_{1/4}$, one might expect a sharp upper bound on δ analogous to the lower bound on p. In this note we show that $\delta = 1/3$ is such an upper bound and do so by means of an elementary proof which can be easily modified to give 1/3 as a sharp lower bound for p.

To simplify our statements, introduce the following

Definition. F and G will be called comparable on a domain R if one of the inequalities $F(z) \leq G(z)$ or $F(z) \geq G(z)$ holds for all z in R.

Theorem 1. Let $x \neq y$ be positive and $0 \leq \delta \leq 1/3 \leq p \leq 1$. Then

(5) $S_{\delta}(x, y) < L(x, y) < M_{p}(x, y).$

If
$$\frac{1}{3} < \delta < 1 \left(0 < p < \frac{1}{3} \right)$$
, L is not comparable to S_{δ} (resp. M_p).

In proving the theorem we obtain an equivalent result which is recorded as a

Corollary. Suppose t > 0. Then for $0 \le \delta \le 1/3 \le p \le 1$,

(6)
$$t \cdot \cosh(\sqrt{\delta t}) < \sinh(t) < t (\cosh(pt))^{1/p}$$
.

If $\frac{1}{3} < \delta < 1$ $\left(0 , sinh(t) is not comparable to <math>t \cosh\left(\sqrt{\delta}t\right)$ (resp. $t \cdot (\cosh\left(pt\right))^{1/p}$).

Proof. It is clear from the definitions of S_{δ} , L and M_p that if y = 1, (5) will be valid for sufficiently large values of x. We shall show that only for δ and p in the prescribed range will (5) be valid for all x and y.

For the first inequality assume 0 < y < x and divide through by y:

$$\frac{1}{2}\left[\left(\frac{x}{y}\right)^{\frac{1+\sqrt{\delta}}{2}}+\left(\frac{x}{y}\right)^{\frac{1-\sqrt{\delta}}{2}}\right]<\left(\frac{x}{y}-1\right)/\log\left(\frac{x}{y}\right).$$

Using $e^{2t} = x/y$, multiply by te^{-t} to obtain the first inequality in (6):

(7)
$$t \cosh(\sqrt{\delta t}) < \sinh(t)$$
.

For (7) to be valid for small t it is necessary that

$$t\left(1+\frac{\delta t^2}{2}\right) \leq t+\frac{t^3}{6}$$

or that $\delta \leq 1/3$. Note that if $1/3 < \delta$, then (7) is false for small *t*, and thus S_{δ} can't be comparable to *L*.

To prove $\delta \leq 1/3$ is sufficient, consider the equivalent inequality

$$f_1(t) = \frac{\sinh(t)}{\cosh(\sqrt{\delta}t)} - t > 0.$$

Then $f_1'(t) = h_1(t)/2 \cosh^2(\sqrt[b]{\delta t})$, where after the use of hyperbolic identities,

$$h_{1}(t) = (1 - \sqrt{\delta}) \cosh\left((1 + \sqrt{\delta})t\right) + (1 + \sqrt{\delta}) \cosh\left((1 - \sqrt{\delta})t\right) - \cosh\left(2\sqrt{\delta}t\right) - 1$$
$$= \sum_{k=1}^{\infty} \frac{t^{2k}}{(2k)!} A_{k}(\delta)$$

with $A_k(\delta) = (1-\delta) [(1+\sqrt{\delta})^{2k-1} + (1-\sqrt{\delta})^{2k-1}] - (4\delta)^k.$

Since S_{δ} increases with δ , it would suffice to show $A_k(1/3) \ge 0$ and is strictly positive for some k. But $A_1(1/3) = 0$, and for k > 1

$$A_k\left(\frac{1}{3}\right) = \frac{4}{3} \sum_{j=1}^{k-1} \left(\frac{1}{3}\right)^j \left[\binom{2k-1}{2j} - \binom{k-1}{j}\right] > 0.$$

This verifies the first inequalities in (5) and (6).

For completeness we sketch a similar approach for the upper bounds. An identical substitution in the upper bound in (5) gives the upper bound in (6). Again examining small t gives

$$t + \frac{t^3}{6} \leq t \left(1 + \frac{1}{p} \left(\frac{1}{2} (pt)^2 \right) \right)$$

or $\frac{1}{3} \leq p$. If $0 , then L and <math>M_p$ are not comparable.

Since M_p increases with p, we again need examine only the putative extreme value, and we begin with the equivalent inequality

$$f_{2}(t) = t - \sinh(t) / (\cosh(pt))^{1/p} > 0.$$

Differentiation gives $f_2'(t) = h_2(t)/8 (\cosh(pt))^{1+1/p}$ with

$$h_2(t) = 8 [(\cosh(pt))^{1+1/p} - \cosh((p-1)t)].$$

Using $p = \frac{1}{3}$ and some hyperbolic identities we find

$$h_2(t) = \cosh\left(\frac{4}{3}t\right) - 4\cosh\left(\frac{2}{3}t\right) + 3 = \sum_{k=1}^{+\infty} \left(\frac{2}{3}t\right)^{2k} \frac{1}{(2k)!} (4^k - 4).$$

The conclusion follows as before, thus completing the proof of the Theorem and of the Corollary.

One further question is raised, of course, and that is the comparability of S_{δ} and M_{p} .

Theorem 2. Suppose $0 \le \delta < 1$. Then for positive $x \ne y$

(8)
$$S_{\delta}(x, y) < M_{p}(x, y),$$

provided $\delta \leq p$. If $0 , <math>S_{\delta}$ and M_p are not comparable. If $\delta > 1$, then

(9) $S_{\delta}(x, y) > M_{p}(x, y),$

provided $\delta \ge p$. If $1 < \delta < p$, S_{δ} and M_p are not comparable.

Corollary. Suppose $0 \le \delta < 1$. Then for t > 0

(10)
$$\cosh(\sqrt{\delta t}) < (\cosh(pt))^{1/p},$$

provided $\delta \leq p$. If. 0 , the two functions are not comparable. $If <math>\delta > 1$, then

(11)
$$\cosh(\sqrt{\delta t}) > (\cosh(pt))^{1/p}$$

provided $\delta \ge p$. If $1 < \delta < p$, the two functions are not comparable.

Proof. It is clear again that the assorted inequalities are valid for y=1 and large x. Our usual transformation gives (10) from (8) and forces for small t

(12)
$$1 + \frac{\delta t^2}{2} \le 1 + \frac{1}{p} \left(\frac{1}{2} (pt)^2 \right)$$

or $\delta \leq p$ as a necessary condition. Using the equivalent inequality

(13)
$$f_3(t) = 1 - \frac{\cosh(\sqrt{\delta}t)}{(\cosh(pt))^{1/p}} > 0,$$

we again obtain $f_{3}'(t)$ as $h_{3}(t)$ divided by a positive quantity, and

$$h_3(t) = (1 - \sqrt{\delta}) \sinh\left(t\left(p + \sqrt{\delta}\right)\right) - (1 + \sqrt{\delta}) \sinh\left(t\left(\sqrt{\delta} - p\right)\right).$$

Using the extreme value $\delta = p < 1$ and $z = t \sqrt{p}$ gives for $h_3(z/\sqrt{p})$

$$\sum_{k=0}^{+\infty} \frac{z^{2k+1}}{(2k+1)!} \left[(1-\sqrt{p}) \left(1+\sqrt{p}\right)^{2k+1} - (1+\sqrt{p}) \left(1-\sqrt{p}\right)^{2k+1} \right]$$
$$= \sum_{k=1}^{+\infty} \frac{z^{2k+1}}{(2k+1)!} 2\sqrt{p} \left(1-p\right) \sum_{j=0}^{k-1} {\binom{2k}{j}} p^{j},$$

completing the proof of (8) and (10).

Analogous arguments give (9) and (11) completing the proofs of the second theorem and corollary.

REFERENCES

1. B. C. CARLSON: The logarithmic mean. Amer. Math. Monthly 79 (1972), 615-618.

2. G. H. HARDY, J. E. LITTLEWOOD, G. PÓLYA: Inequalities. Combridge-London 1952-

3. T. P. LIN: The power mean and the logarithmic mean. Amer. Math. Monthly 81 (1974), 879-883.

Department of Mathematics University of Maryland Baltimore County Baltimore, Maryland 21228 USA

SIMETRIČNA, LOGARITAMSKA I STEPENA SREDINA

A. O. Pittenger

U ovom radu autor je dokazao nejednakosti (5) i (8) između simetričnih, logaritamskih i stepenih sredina.