Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. N6 678-Ne 715 (1980), 19-23.
681. THE SYMMETRIC, LOGARITHMIC AND POWER MEANS*

A. O. Pittenger

Let $L(x, y)$ denote the logarithmic mean of positive x and y :

$$
\begin{equation*}
L(x, y)=\frac{x-y}{\log (x)-\log (y)} \quad(x \neq y) . \tag{1}
\end{equation*}
$$

In two recent notes [1] and [3], the relationship of $L(x, y)$ to the p-th arithmetic or power mean

$$
\begin{equation*}
M_{p}(x, y)=\left[\frac{1}{2}\left(x^{p}+y^{p}\right)\right]^{\frac{1}{p}}, p \neq 0 \tag{2}
\end{equation*}
$$

was discussed and proofs of the following results established. Let $M_{0}(x, y)$ denote the geometric mean $\sqrt{x \cdot y}$. Then for positive $x \neq y$

$$
\begin{equation*}
M_{0}(x, y)<\frac{1}{2}\left(x^{3 / 4} y^{1 / 4}+x^{1 / 4} y^{3 / 4}\right)<L(x, y)<M_{p}(x, y) \tag{3}
\end{equation*}
$$

provided $\frac{1}{3} \leqq p$. The third inequality in (3) is sharp in the sense that if

$$
0<p<\frac{1}{3}, \quad L(x, y)<M_{p}(x, y)
$$

for some, but not all, positive x and y.
The sharpness of $p=1 / 3$ was shown in [3], and it would be interesting to obtain an analogous result for the lower bound. At this point cognoscenti of Hardy, Littlewood and Polya [2] may recognize the second expression in (3) as an example of the symmetric mean of positive x and y :
where we have used the rather unnatural form of the exponent for reasons which will become clear below.

[^0]It is shown in [2: II. 46, 47, 48] that S_{δ} is increasing in δ and that for $x \neq y$

$$
M_{0}(x, y)<S_{\delta}(x, y)<M_{1}(x, y)
$$

provided $0<\delta<1$. Since the second inequality in (3) involves $S_{1 / 4}$, one might expect a sharp upper bound on δ analogous to the lower bound on p. In this note we show that $\delta=1 / 3$ is such an upper bound and do so by means of an elementary proof which can be easily modified to give $1 / 3$ as a sharp lower bound for p.

To simplify our statements, introduce the following
Definition. F and G will be called comparable on a domain R if one of the inequalites $F(z) \leqq G(z)$ or $F(z) \geqq G(z)$ holds for all z in R.

Theorem 1. Let $x \neq y$ be positive and $0 \leqq \delta \leqq 1 / 3 \leqq p \leqq 1$. Then

$$
\begin{equation*}
S_{\delta}(x, y)<L(x, y)<M_{p}(x, y) . \tag{5}
\end{equation*}
$$

If $\frac{1}{3}<\delta<1\left(0<p<\frac{1}{3}\right)$, L is not comparable to $S_{8}\left(\right.$ resp. $\left.M_{p}\right)$.
In proving the theorem we obtain an equivalent result which is recorded as a
Corollary. Suppose $t>0$. Then for $0 \leqq \delta \leqq 1 / 3 \leqq p \leqq 1$,

$$
\begin{equation*}
t \cdot \cosh (\sqrt{\delta} t)<\sinh (t)<t(\cosh (p t))^{1 / p} \tag{6}
\end{equation*}
$$

If $\frac{1}{3}<\delta<1\left(0<p<\frac{1}{3}\right), \sinh (t)$ is not comparable to $t \cosh (\sqrt{\delta} t)$ (resp. $\left.t \cdot(\cosh (p t))^{1 / p}\right)$.

Proof. It is clear from the definitions of S_{8}, L and M_{p} that if $y=1$, (5) will be valid for sufficiently large values of x. We shall show that only for δ and p in the prescribed range will (5) be valid for all x and y.

For the first inequality assume $0<y<x$ and divide through by y :

$$
\frac{1}{2}\left[\left(\frac{x}{y}\right)^{\frac{1+\sqrt{\delta}}{2}}+\left(\frac{x}{y}\right)^{\frac{1-\sqrt{\delta}}{2}}\right]<\left(\frac{x}{y}-1\right) / \log \left(\frac{x}{y}\right) .
$$

Using $e^{2 t}=x / y$, multiply by $t e^{-t}$ to obtain the first inequality in (6):

$$
\begin{equation*}
t \cosh (\sqrt{\delta} t)<\sinh (t) \tag{7}
\end{equation*}
$$

For (7) to be valid for small t it is necessary that

$$
t\left(1+\frac{\delta t^{2}}{2}\right) \leqq t+\frac{t^{3}}{6}
$$

or that $\delta \leqq 1 / 3$. Note that if $1 / 3<\delta$, then (7) is false for small t, and thus S_{5} can't be comparable to L.

To prove $\delta \leqq 1 / 3$ is sufficient, consider the equivalent inequality

$$
f_{1}(t)=\frac{\sinh (t)}{\cosh (\sqrt{\delta} t)}-t>0
$$

Then $f_{1}^{\prime}(t)=h_{1}(t) / 2 \cosh ^{2}(\sqrt{\delta} t)$, where after the use of hyperbolic identities,

$$
\begin{aligned}
h_{1}(t) & =(1-\sqrt{\delta}) \cosh ((1+\sqrt{\delta}) t)+(1+\sqrt{\delta}) \cosh ((1-\sqrt{\delta}) t)-\cosh (2 \sqrt{\delta} t)-1 \\
& =\sum_{k=1}^{\infty} \frac{t^{2} k}{(2 k)!} A_{k}(\delta)
\end{aligned}
$$

with $A_{k}(\delta)=(1-\delta)\left[(1+\sqrt{\delta})^{2 k-1}+(1-\sqrt{\delta})^{2 k-1}\right]-(4 \delta)^{k}$.
Since S_{δ} increases with δ, it would suffice to show $A_{k}(1 / 3) \geqq 0$ and is strictly positive for some k. But $A_{1}(1 / 3)=0$, and for $k>1$

$$
A_{k}\left(\frac{1}{3}\right)=\frac{4}{3} \sum_{j=1}^{k-1}\left(\frac{1}{3}\right)^{j}\left[\binom{2 k-1}{2 j}-\binom{k-1}{j}\right]>0
$$

This verifies the first inequalities in (5) and (6).
For completeness we sketch a similar approach for the upper bounds. An identical substitution in the upper bound in (5) gives the upper bound in (6). Again examining small t gives

$$
t+\frac{t^{3}}{6} \leqq t\left(1+\frac{1}{p}\left(\frac{1}{2}(p t)^{2}\right)\right)
$$

or $\frac{1}{3} \leqq p$. If $0<p<\frac{1}{3}$, then L and M_{p} are not comparable.
Since M_{p} increases with p, we again need examine only the putative extreme value, and we begin with the equivalent inequality

$$
f_{2}^{\prime}(t)=t-\sinh (t) /(\cosh (p t))^{1 / p}>0
$$

Differentiation gives $f_{2}^{\prime}(t)=h_{2}(t) / 8(\cosh (p t))^{1+1 / p}$ with

$$
h_{2}(t)=8\left[(\cosh (p t))^{1+1 / p}-\cosh ((p-1) t)\right] .
$$

Using $p=\frac{1}{3}$ and some hyperbolic identities we find

$$
h_{2}(t)=\cosh \left(\frac{4}{3} t\right)-4 \cosh \left(\frac{2}{3} t\right)+3=\sum_{k=1}^{+\infty}\left(\frac{2 t}{3}\right)^{2 k} \frac{1}{(2 k)!}\left(4^{k}-4\right)
$$

The conclusion follows as before, thus completing the proof of the Theorem and of the Corollary.

One further question is raised, of course, and that is the comparability of S_{δ} and M_{p}.

Theorem 2. Suppose $0 \leqq \delta<1$. Then for positive $x \neq y$

$$
\begin{equation*}
S_{\delta}(x, y)<M_{p}(x, y) \tag{8}
\end{equation*}
$$

provided $\delta \leqq p$. If $0<p<\delta<1, S_{\delta}$ and M_{p} are not comparable. If $\delta>1$, then

$$
\begin{equation*}
S_{\delta}(x, y)>M_{p}(x, y), \tag{9}
\end{equation*}
$$

provided $\delta \geqq p$. If $1<\delta<p, S_{\delta}$ and M_{p} are not comparable.
Corollary. Suppose $0 \leqq \delta<1$. Then for $t>0$

$$
\begin{equation*}
\cosh (\sqrt{\delta} t)<(\cosh (p t))^{1 / p} \tag{10}
\end{equation*}
$$

provided $\delta \leqq p$. If. $0<p<\delta<1$, the two functions are not comparable.
If $\delta>1$, then

$$
\begin{equation*}
\cosh (\sqrt{\delta} t)>(\cosh (p t))^{1 / p} \tag{11}
\end{equation*}
$$

provided $\delta \geqq p$. If $1<\delta<p$, the two functions are not comparable.
Proof. It is clear again that the assorted inequaliies are valid for $y=1$ and large x. Our usual transformation gives (10) from (8) and forces for small t

$$
\begin{equation*}
1+\frac{\delta t^{2}}{2} \leqq 1+\frac{1}{p}\left(\frac{1}{2}(p t)^{2}\right) \tag{12}
\end{equation*}
$$

or $\delta \leqq p$ as a necessary condition. Using the equivalent inequality

$$
\begin{equation*}
f_{3}(t)=1-\frac{\cosh (\sqrt{\delta} t)}{(\cosh (p t))^{1 / p}}>0 \tag{13}
\end{equation*}
$$

we again obtain $f_{3}^{\prime}(t)$ as $h_{3}(t)$ divided by a positive quantity, and

$$
h_{3}(t)=(1-\sqrt{\delta}) \sinh (t(p+\sqrt{\delta}))-(1+\sqrt{\delta}) \sinh (t(\sqrt{\delta}-p))
$$

Using the extreme value $\delta=p<1$ and $z=t \sqrt{p}$ gives for $h_{3}(z / V / \bar{p})$

$$
\begin{aligned}
& \sum_{k=0}^{+\infty} \frac{z^{2 k+1}}{(2 k+1)!}\left[(1-\sqrt{p})(1+\sqrt{p})^{2 k+1}-(1+\sqrt{p})(1-\sqrt{p})^{2 k+1}\right] \\
&=\sum_{k=1}^{+\infty} \frac{z^{2 k+1}}{(2 k+1)!} 2 \sqrt{p}(1-p) \sum_{j=0}^{k-1}\binom{2 k}{j} p^{j}
\end{aligned}
$$

completing the proof of (8) and (10).

Analogous arguments give (9) and (11) completing the proofs of the second theorem and corollary.

REFERENCES

1. B. C. Carlson: The logarithmic mean. Amer. Math. Monthly 79 (1972), 615-618.
2. G. H. Hardy, J. E. Littlewood, G. Pólya: Inequalities. Combridge-London 1952.
3. T. P. Lin: The power mean and the logarithmic mean. Ameir. Math. Monthly 81 (1974), 879-883.

Department of Mathematics
University of Maryland Baltimore County
Baltimore, Maryland 21228
USA

SIMETRIČNA, LOGARITAMSKA I STEPENA SREDINA

A. O. Pittenger

U ovom radu autor je dokazao nejednakosti (5) i (8) između simetričnih, logaritamskih i stepenih sredina.

[^0]: * Received April 1976. Presented July 12, 1977 by P. S. Bullen.

