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681. THE SYMMETRIC, LOGARITHMIC AND POWER MEANS*

A. O. Pittenger

Let L (x, y) denote the logarithmic mean of positive x and y:

L(x, y)=
x-y

log (x)-Iog (y)

In two recent notes [1] and [3], the relationship
metic or power mean

(x=f:y).(I)

of L (x, y) to the p-th. arith-

1

Mp(X, y)=[~ (XP+yP)]1', p;f=O,

was discussed and proofs of the following results established. Let Mo (x, y)

denote the p-eometric mean Vx .y. Then for positive x =f:y

(2)

(3) 1
Mo (x, y) < 2

(x3/4 y1/4 + x1/4y3/4) <L (x, y) < Mp (x, y),

I
provided - -;;;'p. The third inequality in (3) is sharp in the sense that if

3

1
O<p<-,

3
L (x, y) <Mp (x, y)

for some, but not all, positive x and y.
The sharpness of p = 1/3 was shown in [3], and it would be interesting

to obtain an analogous result for the lower bound. At this point cognoscenti
of HARDY, LITTLEWOODand POLYA [2] may recognize the second expression in
(3) as an example of the symmetric mean of positive x and y:

I ( 1+VB I-Vii I-Vii 1+VIi)Sl; (x, y) = 2
x--y-. y--y- + x--y- .y--y- ,(4)

where we have used the rather unnatural form of the exponent for reasons
which will become clear below.
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It is shown in [2: II. 46, 47, 48] that S8 is increasing in 8 and that
for x=l=y

provided 0 <8 < 1. Since the second inequality In (3) involves S1/4' one might
expect a sharp upper bound on 8 analogous to the lower bound on p. In this
note we show that 8 = 1/3 is such an upper bound and do so by means of an
elementary proof which can be easily modified to give 1/3 as a sharp lower
bound for p.

To simplify our statements,: introduce the following

Definition. F and G will be called comparable on a domain R if one of the
inequalites F (z) ~ G (z) or F (z) ~ G (z) holds for all z in R.

Theorem 1. Let x=l=Y be positive and 0 ~ a ~ 1/3 ~p ~ 1. Then

(5) SII(x, y)<L (x, y)<Mp (x, y).

If ~<8 < 1 (O<p< ~), L is not comparable to 811(resp. Mp)'

In proving the theorem we obtain an equivalent result which is recorded as a

Corollary. Suppose t> O. Then for 0 ~ 8 ~ 1/3 ~p ~ 1,

(6) t. cosh (Vft) <sinh (t) <t (cosh (pt»llp.

If .!<8< 1
3

t. (cosh (pt»)1lp).

(0<p < +), sinh (t) is not comparable to t cosh (V3 t) (resp.

Proof. It is clear from the definitions of Sa, Land Mp that if y = 1, (5)
will be valid for sufficiently large values of x. We shall show that only for 8
and p in the prescribed range will (5) be valid for all x and y.

For the first inequality assume 0 <y <x and divide thr~ugh by y:

Using e2'=x/y, multiply by te-' to obtain the first inequality in (6):

(7) t cosh (Vat) <sinh (t).

For (7) to be valid for small t it is nece::sary that
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or that 8 ~ 1/3. Note that if 1/3 <8, then (7) is false for small t, and thus Sa
can't be comparable to L.

To prove 8 ~ 1/3 is sufficient, consider the equivalent inequality

11(t) =
sinh (I)

t> O.cosh(V81)

Then It' (t) = hI (t)/2 coshz (V8t), where after the use of hyperbolic identities,

hI (t) = (1- Va) cosh «(I + ~) t) + (I + V~) cosh «(I-~) t) -cosh (2 V~ t) - 1
00 12 k

=
k~l (2k)!

Ak (8)

with Ad8)=(1- 8) [(I + ~)Zk-l + (1- ~)Zk-l] - (48)k.

Since StJ increases with 8, it would suffice to show Ak (1/3) ~ 0 and is strictly
positive for some k. But Al (1/3) = 0, and for k> 1

This verifies the first inequalities in (5) and (6).

For completeness we sketCh a similar approach for the upper bounds. An
identical substitution in the upper bound in (5) gives the upper bound in (6).
Again examining small t gives.

.

t + :3 ~ t (1+ ; (~ (Pt)Z))

1 1
or 3~P. If 0<P<3' then Land Mp are not comparable.

Since Mp increases with p, we again need examine only the putative extreme
value, and we begin with the equivalent inequality

Ii (t) = t - sinh (t)/(cosh (pt»)l/p> O.

Differentiation gives Iz' (t)=hz (t)/8 (cosh (pt»1+
lip

with

hz (t) = 8 [(cosh (pt)Y
+llp -cosh «p - 1) t)].

Using p = ~ and some hyperbolic identities we find
3

(4 ) (2 )
+ 00

(2/ )
2k 1

hz(t)=cosh -t -4cosh -t +3= 2: - - (4k-4).3 3 k=l 3 (2k)!

The conclusion follows as before, thus completing the proof of the Theorem
and of the Corollary.
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, One further question is raised, of course, and that is the comparability
of S3 and Mp-

Theorem 2. Suppose 0 ~ a< I. Then for positive x:f=y

(8) S3 (x, y) <Mp (x, y),

provided a~p. If O<p<a<l, S3, and Mp are not comparable.
If a> I, then

(9):

provided a ~p. If 1< a <p, S3 and Mp are not comparable.

Corollary. Suppose 0 ~ a < I. Then for t> 0

(10) cosh nlft) «cosh (pt)lfp,

provided a ~p. If. 0 <p < a < I, the two functions are not comparable.
If a> 1, then

( 11)

provided a ~p. If 1<a <p, the two functions are not comparable. ,

Proof. It is clear again that the assorted inequalities are valid for y = 1
and large x. Our usual transformation gives (10) from (8) and forces for small t

(12) 8 (2. 1 (1 )[1 + ~~1 + -- _(pt)2
2 P 2

or a~p as a necessary condition. Using the equivalent inequality

(13)

we again obtain f3' (t) as h3 (t) divided by a positive quantity, and

h3(t) = (1 - Va-) sinh (t (p + V~) - (1 + Vf) sinh (t <Va'- p).
.

Using the extreme value a=p<1 and z=tV.iJ gives for h3(z/Vi)

. +00 z2k+1
- k-l

(2k ) .

=k~l (2k+1)!2Vp
(I-p)

j~O j
pl,

completing the proof of (8) and (10).



The Symmetric, Logarithmic and Power Means 23

Analogous arguments give (9) and (11) completing the proofs of the
second theorem and corollary.
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SIMETRICNA, LOGARITAMSKA I STEPENA SREDINA

A. O. Pittenger

U ovomradu autor je dokazao nejednakosti (5) i (8) izmedu simetricnih, logaritamskih
i stepenih sredina.


