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679. SOME REMARKS ON THE STIRLING NUMBERS*
L. Carlitz

1. The Stirling numbers S, (n, k), S(n, k) of the first and second kind
tespectively, can be defined by

.1 XGEED-(xrn—T)m S S, (1, K)x*
k=0
and
(1.2) =S S0 BDx(x=1)- - (x—k+1),
k=0

Also it is well known that S, (n, n—k) and S(n, n—k) are polynomials in n
of degree 2k and that, for k=1,

(1.3) S;(n, n—k)=S(n, n—k)=0 O=n<k).
It is proved in [4] that there exist two triangular arrays

such that, for k=1,

k ~ [n+j—1
(1.4) S n=k)=3 Bk, (" )
and
X N (m+i—1
(1.5) S (n, n—-k)—ngB(k, ) ( v )
Moreover
(1.6) B, (k, j)=B(k, k—j+1) (1=j=k).

By means of (1.4) and (1.5), S,(n, n—k) and S(n, n—k) are defined
as polynomials in n for arbitrary real or complex n.

* Received December 22, 1977 and presented June 23, 1980 by D. S. MITRINOVIC,
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Substituting from (1.6) in (1.4) we get

S(n,n k)= zB(kk ;+1)(”+’ ‘) éB(k )("*""),

“ 2k
so that
S (=ntk, —n) g Bk, j )( "*i" ’) ZB(k )("“ ‘).
Therefore, by (1.5)
(1.7 S, (—n+k, —n)=S(n, n—k)
and similarly
(1.8) | . S(—n+k, —n)=S8,(n, n—k).

For references see [5].

2. We have also the representations k

k-
@) S, (n, n— k)_,;zo S1(, J)(Zk J)
and
2.2) | S(n n—k)=k§5'(k ')( "
@ | , 38 2k_],).

The coefficients on the right are the numbers of JORDAN [6, Ch.4] and
WARD [7]. For the notation used here see [2].

In (2.1) replace n by —n+k. Thus

S, (~n+k, n)—zsl(k N(; ”*") ki(—l)zs *, ,)("+k =1y
=l§) -1)1S1(k b)) z (2]': ,) (k:ij—l) fil (2k )z(—-l)jsl (%, J)( )

Hence, by (1.7) and (2.2),

@3 St =3 (=1 N (7).

j=0
Similarly we have

(2.4) St (k, 1)= Z(—I)JS'(k )(" ’]1)

For a different proof of (2.3) and (2.4) as well as other relations of
this kind involving the other coecfficients -see. [2]. :
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3. The results of §1 suggest the following.

Let
(3.1 {f @} {1, )} k=0, 1, 2,..)
be two sequences of polynomials that satisfy
3.2) deg fi (x)=deg f, , (x)=2k k=0, 1, 2,..)
and
(3.2 Se(D =11, ()=0 0=j=k).

We may put [3], for k=1,
33) fi)- zb(k M) fato= zb & N

We shall say that the sequences {f, (x)}, {f.. ()} are conjugate provided
3.9 b,(k, j))=b(k, k—j+1) (1=j=k).

Substituting from (3.4) in the second of (3.3) we get

Sre(x)= Zb(k k— _]+1)(x+" 1) Zb(k )(x+k j)

Jj=1

k —x+k+j—1
Z ( 2k )
Thus f, . (—x+k) =§ (x+21k l), so that
3.5 fix(—x+k)=fi (%) k=1, 2,...).

Conversely if we assume (3.5) then the above steps can be reversed to
get (3.4).
This proves the following

Theorem. Two sequences of polynomials {f,. (%)}, {f,.x(x)} that satisfy (3.1),
(3.2) and (3.2) are conjugate if and only if (3.5) holds.

Corollary. The sequence {f,(x)} is self-conjugate if and only if
(3.6) Si(=x+E)=fi (%) k=1,2,..)

or equivalently

(3.7 bk, k—j+1)mb(k, j) (1=j<k).
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4. As an example illustrating the corollary we take

fo=(2)(7)
It is easily verified that f, (x) satisfies (3.6). Put
(D)) f e ()

Multiply both sides of (4.2) by (x—k) (x—k—-1)/(k+1)*. Using the
identity

(x-kYy(x—k—D=x+j-2k-1)(x+j-2k—-2)
+2k—j+D(x+j-2k—D+k—-j)k—j+ 1),
we find after some manipulation that b (k, j) satisfies the recurrence
(4.3) bk+1, )=(k—j+2)(k—j+3)b(k, j—2)
+2k+))k—j+2)bk, j—D+(k+)Kk+j+ Dbk, ).
Also, by (3.6), we have
4.9 bk, k—j+1)=b(k, j) (1=sj=k).

An explicit formula for b (k, j) is obtained as a special case of the follo-
wing general result [3, §7].

Let f(x) be an arbitrary polynomial of degree k and put

(4.5) fx+y—1)= z("“ ‘)Ck.,<y).

Then

(4.6) Coy(9) =5 S VRV
t=0

and conversely.
In (4.5) replace k£ by 2k and take y=1. Thus (4.5) becomes

X J
)= z(*’ Y Cans () anbr &y ()= 3 -1y (PN 1 (=4
~ quali 1=
x—1
k

4.7 b (k, j)zéo( 1y (2k+1)(~2+t)(—j+k;_1)

Finally, taking f(x)= ( z ) ( ) , we get
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or, if we prefer,

(4.8)

b D=3 G CENET) () Gz

The sum on the right is Saalschiitzian [1, p. 9] and we find that

(4.9)

s =4

Therefore finally we have

@ ()02 5 0502 GG

j=0

The identity (4.10) can be verified by SAALSCHUTZ’S theorem.
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NEKE PRIMEDBE O STIRLINGOVIM BROJEVIMA

, yu
L C

miuo,
U ovom radu uopstene su neke formule za Stirlingove brojeve prve i druge vrste.



