Univ. Beograd. Publ. Elektrotehn. Fak.

Seff. Mat. Fiz. Ne 678-N6 715 (1980), 10-14.
679. SOME REMARKS ON THE STIRLING NUMBERS*

L. Carlitz

1. The Stirling numbers $S_{1}(n, k), S(n, k)$ of the first and second kind respectively, can be defined by

$$
\begin{equation*}
x(x+1) \cdots(x+n-1)=\sum_{k=0}^{n} S_{1}(n, k) x^{k} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{n}=\sum_{k=0}^{n} S(n, k) x(x-1) \cdots(x-k+1) \tag{1.2}
\end{equation*}
$$

Also it is well known that $S_{1}(n, n-k)$ and $S(n, n-k)$ are polynomials in n of degree $2 k$ and that, for $k \geqq 1$,

$$
\begin{equation*}
S_{1}(n, n-k)=S(n, n-k)=0 \quad(0 \leqq n \leqq k) \tag{1.3}
\end{equation*}
$$

It is proved in [4] that there exist two triangular arrays

$$
\left(B_{1}(k, j)\right),(B(k, j)) \quad(k=1,2, \ldots ; j=1, \ldots, k)
$$

such that, for $k \geqq 1$,

$$
\begin{equation*}
S_{1}(n, n-k)=\sum_{j=1}^{k} B_{1}(k, j)\binom{n+j-1}{2 k} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
S(n, n-k)=\sum_{j=1}^{k} B(k, j)\binom{n+j-1}{2 k} \tag{1.5}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
B_{1}(k, j)=B(k, k-j+1) \quad(1 \leqq j \leqq k) \tag{1.6}
\end{equation*}
$$

By means of (1.4) and (1.5), $S_{1}(n, n-k)$ and $S(n, n-k)$ are defined as polynomials in n for arbitrary real or complex n.

[^0]Substituting from (1.6) in (1.4) we get

$$
S_{1}(n, n-k)=\sum_{j=1}^{k} B(k, k-j+1)\binom{n+j-1}{2 k}=\sum_{j=1}^{k} B(k, j)\binom{n+k-j}{2 k},
$$

so that

$$
S_{1}(-n+k,-n)=\sum_{j=1}^{k} B(k, j)\binom{-n+2 k-j}{2 k}=\sum_{j=1}^{k} B(k, j)\binom{n+j-1}{2 k} .
$$

Therefore, by (1.5)

$$
\begin{equation*}
S_{1}(-n+k,-n)=S(n, n-k) \tag{1.7}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
S(-n+k,-n)=S_{1}(n, n-k) \tag{1.8}
\end{equation*}
$$

For references see [5].
2. We have also the representations

$$
\begin{equation*}
S_{1}(n, n-k)=\sum_{j=0}^{k-1} S_{1}^{\prime}(k, j)\binom{n}{2 k-j} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
S(n, n-k)=\sum_{j=0}^{k-1} S^{\prime}(k, j)\binom{n}{2 k-j} . \tag{2.2}
\end{equation*}
$$

The coefficients on the right are the numbers of Jordan [6, Ch.4] and Ward [7]. For the notation used here see [2].

In (2.1) replace n by $-n+k$. Thus

$$
\begin{aligned}
& S_{\mathrm{l}}(-n+k, n)=\sum_{j=0}^{k-1} S_{1}^{\prime}(k, j)\binom{-n+k}{2 k-j}=\sum_{j=0}^{k-1}(-1)^{j} S_{1}(k, j)\binom{n+k-j-1}{2 k-j} \\
= & \sum_{j=0}^{k-1}(-1)^{j} S_{1}^{\prime}(k, j) \sum_{t=j}^{k-1}\left(\begin{array}{c}
n \\
2 \\
k-t
\end{array}\right)\binom{k-j-1}{t-j}=\sum_{t=0}^{j-1}\binom{n}{2 k-t} \sum_{j=0}^{t}(-1)^{j} S_{1}^{\prime}(k, j)\binom{k-j-1}{t-j} .
\end{aligned}
$$

Hence, by (1.7) and (2.2),

$$
\begin{equation*}
S^{\prime}(k, t)=\sum_{j=0}^{t}(-1)^{j} S_{1}^{\prime}(k, j)\binom{k-j-1}{t-j} \tag{2.3}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
S_{1}^{\prime}(k, t)=\sum_{j=0}^{t}(-1)^{j} S^{\prime}(k, j)\binom{k-j-1}{t-j} \tag{2.4}
\end{equation*}
$$

For a different proof of (2.3) and (2.4) as well as other relations of this kind involving the other coefficients see [2].
3. The results of $\S 1$ suggest the following.

Let

$$
\begin{equation*}
\left\{f_{k}(x)\right\},\left\{f_{1, k}(x)\right\} \quad(k=0,1,2, \ldots) \tag{3.1}
\end{equation*}
$$

be two sequences of polynomials that satisfy

$$
\begin{equation*}
\operatorname{deg} f_{k}(x)=\operatorname{deg} f_{1, k}(x)=2 k \quad(k=0,1,2, \ldots) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{k}(j)=f_{1, k}(j)=0 \quad(0 \leqq j \leqq k) \tag{3.2}
\end{equation*}
$$

We may put [3], for $k \geqq 1$,

$$
\begin{equation*}
f_{k}(x)=\sum_{j=1}^{k} b(k, j)\binom{x+j-1}{2 k}, \quad f_{1, k}(x)=\sum_{j=1}^{k} b_{1}(k, j)\binom{x+j-1}{2 k} . \tag{3.3}
\end{equation*}
$$

We shall say that the sequences $\left\{f_{k}(x)\right\},\left\{f_{1, k}(x)\right\}$ are conjugate provided

$$
\begin{equation*}
b_{1}(k, j)=b(k, k-j+1) \quad(1 \leqq j \leqq k) \tag{3.4}
\end{equation*}
$$

Substituting from (3.4) in the second of (3.3) we get

$$
\begin{aligned}
f_{1, k}(x) & =\sum_{j=1}^{k} b(k, k-j+1)\binom{x+j-1}{2 k}=\sum_{j=1}^{k} b(k, j)\binom{x+k-j}{2 k} \\
& =\sum_{j=1}^{k} b(k, j)\binom{-x+k+j-1}{2 k}
\end{aligned}
$$

Thus $f_{1, k}(-x+k)=\sum_{j=1}^{k} b(k, j)\binom{x+j-1}{2 k}$, so that

$$
\begin{equation*}
f_{1, k}(-x+k)=f_{k}(x) \quad(k=1,2, \ldots) \tag{3.5}
\end{equation*}
$$

Conversely if we assume (3.5) then the above steps can be reversed to get (3.4).

This proves the following
Theorem. Two sequences of polynomials $\left\{f_{k}(x)\right\},\left\{f_{1, k}(x)\right\}$ that satisfy (3.1), (3.2) and (3.2)' are conjugate if and only if (3.5) holds.

Corollary. The sequence $\left\{f_{k}(x)\right\}$ is self-conjugate if and only if

$$
\begin{equation*}
f_{k}(-x+k)=f_{k}(x) \quad(k=1,2, \ldots) \tag{3.6}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
b(k, k-j+1)-b(k, j) \quad(1 \leqq j \leqq k) \tag{3.7}
\end{equation*}
$$

4. As an example illustrating the corollary we take

$$
\begin{equation*}
f_{k}(x)=\binom{x}{k}\binom{x-1}{k} \tag{4.1}
\end{equation*}
$$

It is easily verified that $f_{k}(x)$ satisfies (3.6). Put

$$
\begin{equation*}
\binom{x}{k}\binom{x-1}{k}=\sum_{j=1}^{k} b(k, j)\binom{x+j-1}{2 k} \tag{4.2}
\end{equation*}
$$

Multiply both sides of (4.2) by $(x-k)(x-k-1) /(k+1)^{2}$. Using the identity

$$
\begin{aligned}
& (x-k)(x-k-1)=(x+j-2 k-1)(x+j-2 k-2) \\
& \quad+2(k-j+1)(x+j-2 k-1)+(k-j)(k-j+1)
\end{aligned}
$$

we find after some manipulation that $b(k, j)$ satisfies the recurrence

$$
\begin{align*}
b(k+1, j)= & (k-j+2)(k-j+3) b(k, j-2) \tag{4.3}\\
& +2(k+j)(k-j+2) b(k, j-1)+(k+j)(k+j+1) b(k, j)
\end{align*}
$$

Also, by (3.6), we have

$$
\begin{equation*}
b(k, k-j+1)=b(k, j) \quad(1 \leqq j \leqq k) \tag{4.4}
\end{equation*}
$$

An explicit formula for $b(k, j)$ is obtained as a special case of the following general result $[3,87]$.

Let $f(x)$ be an arbitrary polynomial of degree k and put

$$
\begin{equation*}
f(x+y-1)=\sum_{j=0}^{k}\binom{x+j-1}{k} C_{k, j}(y) \tag{4.5}
\end{equation*}
$$

Then

$$
\begin{equation*}
C_{k, J}(y)=\sum_{t=0}^{j}(-1)^{k-t}\binom{k+1}{t} f(y-j+t-1) \tag{4.6}
\end{equation*}
$$

and conversely.
In (4.5) replace k by $2 k$ and take $y=1$. Thus (4.5) becomes

$$
f(x)=\sum_{j=1}^{k}\binom{x+j-1}{2 k} C_{2 k, j}(1) \text { and }_{r}\left(x_{k, j}(1)=\sum_{t=0}^{j}(-1)^{t}\binom{2 k+1}{t} f(-j+t)\right.
$$

Finally, taking $f(x)=\binom{x}{k}\binom{x-1}{k}$, we get

$$
\begin{equation*}
b(k, j)=\sum_{t=0}^{j}(-1)^{t}\binom{2 k+1}{t}\binom{-j+t}{k}\binom{-j+t-1}{k} \tag{4.7}
\end{equation*}
$$

or, if we prefer,

$$
\begin{equation*}
b(k, j)=\sum_{t=1}^{j}(-1)^{j-t}\binom{2 k+1}{j-t}\binom{k+t}{k}\binom{k+t-1}{k} \quad(k \geqq 1) \tag{4.8}
\end{equation*}
$$

The sum on the right is Saalschützian [1, p. 9] and we find that

$$
\begin{equation*}
b(k, j)=\frac{k+1}{k}\binom{k}{j}\binom{k}{j-1}=\binom{k+1}{j}\binom{k-1}{j-1} . \tag{4.9}
\end{equation*}
$$

Therefore finally we have

$$
\begin{equation*}
\binom{x}{k}\binom{x-1}{k}=\sum_{j=1}^{k} \frac{k+1}{k}\binom{x+j-1}{2 k}\binom{k}{j}\binom{k}{j-1}=\sum_{j=0}^{k-1}\binom{x+j}{2 k}\binom{k+1}{j+1}\binom{k-1}{j} \tag{4.10}
\end{equation*}
$$

The identity (4.10) can be verified by Sallschütz's theorem.

REFERENCES

1. W. N. Balley: Generalized Hypergeometric Series. Cambridge 1935.
2. L. Carlitz: Note on the numbers of Jordan and Ward. Duke Math. J. 38 (1971), 783-790.
3. L. Carlitz: Polynomial representations and compositions I. Houston Journal of Math. 2 (1976), 23-48.
4. L. Carlitz: Some numbers related to the Stirling numbers of the first and second kind. These Publications № 554-№ 576 (1976), 49-55.
5. H. W. Gould: Stirling number representation problems. Proc. Amer. Math. Soc. 11 (1960), 447-451.
6. C. Jordan: Calculus of finite differences. New York 1947.
7. M. Ward: The representation of Stirling's numbers and Stirling's polynomials as sum of factorials. Amer. Journal of Math. 56 (1934), 87-95.

Duke University
Department of Mathematics
Durham, N. C. 27706
U.S.A.

NEKE PRIMEDBE O STIRLINGOVIM BROJEVIMA

$$
L \cdot C^{y リ}
$$

mina.
U ovom radu uopštene su neke formule za Stirlingove brojeve prve i druge vrste.

[^0]: * Received December 22, 1977 and presented June 23, 1980 by D. S. Mirrinović.

