Univ. Beograd. Publ. Elektrotehn. Fak. Sef. Mat. Fiz. № 678-№ 715 (1980), 10-14.

679. SOME REMARKS ON THE STIRLING NUMBERS*

L. Carlitz

1. The Stirling numbers $S_1(n, k)$, S(n, k) of the first and second kind respectively, can be defined by

(1.1)
$$x(x+1)\cdots(x+n-1) = \sum_{k=0}^{n} S_1(n, k) x^k$$

and

(1.2)
$$x^{n} = \sum_{k=0}^{n} S(n, k) x (x-1) \cdot \cdot \cdot (x-k+1).$$

Also it is well known that $S_1(n, n-k)$ and S(n, n-k) are polynomials in n of degree 2k and that, for $k \ge 1$,

(1.3)
$$S_1(n, n-k) = S(n, n-k) = 0 (0 \le n \le k).$$

It is proved in [4] that there exist two triangular arrays

$$(B_1(k, j)), (B(k, j))$$
 $(k = 1, 2, ...; j = 1, ..., k)$

such that, for $k \ge 1$,

(1.4)
$$S_1(n, n-k) = \sum_{j=1}^k B_1(k, j) {n+j-1 \choose 2k}$$

and

(1.5)
$$S(n, n-k) = \sum_{i=1}^{k} B(k, j) {n+j-1 \choose 2k}.$$

Moreover

(1.6)
$$B_1(k, j) = B(k, k-j+1)$$
 $(1 \le j \le k)$.

By means of (1.4) and (1.5), $S_1(n, n-k)$ and S(n, n-k) are defined as polynomials in n for arbitrary real or complex n.

^{*} Received December 22, 1977 and presented June 23, 1980 by D. S. MITRINOVIĆ.

Substituting from (1.6) in (1.4) we get

$$S_1(n, n-k) = \sum_{j=1}^k B(k, k-j+1) {n+j-1 \choose 2k} = \sum_{j=1}^k B(k, j) {n+k-j \choose 2k},$$

so that

$$S_1(-n+k, -n) = \sum_{j=1}^k B(k,j) {n+2k-j \choose 2k} = \sum_{j=1}^k B(k,j) {n+j-1 \choose 2k}.$$

Therefore, by (1.5)

(1.7)
$$S_1(-n+k, -n) = S(n, n-k)$$

and similarly

(1.8)
$$S(-n+k, -n) = S_1(n, n-k).$$

For references see [5].

2. We have also the representations

(2.1)
$$S_{1}(n, n-k) = \sum_{j=0}^{k-1} S'_{1}(k, j) {n \choose 2 k-j}$$

and

(2.2)
$$S(n, n-k) = \sum_{j=0}^{k-1} S'(k, j) {n \choose 2k-j}.$$

The coefficients on the right are the numbers of JORDAN [6, Ch. 4] and WARD [7]. For the notation used here see [2].

In (2.1) replace n by -n+k. Thus

$$S_{1}(-n+k, n) = \sum_{j=0}^{k-1} S'_{1}(k, j) {\binom{-n+k}{2k-j}} = \sum_{j=0}^{k-1} (-1)^{j} S_{1}(k, j) {\binom{n+k-j-1}{2k-j}}$$

$$= \sum_{j=0}^{k-1} (-1)^{j} S_{1}'(k,j) \sum_{t=j}^{k-1} {n \choose 2 \ k-t} {k-j-1 \choose t-j} = \sum_{t=0}^{j-1} {n \choose 2 \ k-t} \sum_{j=0}^{t} (-1)^{j} S_{1}'(k,j) {k-j-1 \choose t-j}.$$

Hence, by (1.7) and (2.2),

(2.3)
$$S'(k, t) = \sum_{j=0}^{t} (-1)^{j} S'_{1}(k, j) {k-j-1 \choose t-j}.$$

Similarly we have

(2.4)
$$S'_{1}(k, t) = \sum_{j=0}^{t} (-1)^{j} S'(k, j) {k-j-1 \choose t-j}.$$

For a different proof of (2.3) and (2.4) as well as other relations of this kind involving the other coefficients see [2].

3. The results of §1 suggest the following. Let

$$(3.1) {f_k(x)}, {f_{1,k}(x)} (k = 0, 1, 2, ...)$$

be two sequences of polynomials that satisfy

(3.2)
$$\deg f_k(x) = \deg f_{1,k}(x) = 2k \qquad (k = 0, 1, 2, ...)$$

and

$$(3.2)' f_k(j) = f_{1,k}(j) = 0 (0 \le j \le k).$$

We may put [3], for $k \ge 1$,

(3.3)
$$f_k(x) = \sum_{j=1}^k b(k, j) {x+j-1 \choose 2k}, \quad f_{1,k}(x) = \sum_{j=1}^k b_1(k, j) {x+j-1 \choose 2k}.$$

We shall say that the sequences $\{f_k(x)\}, \{f_{1,k}(x)\}\$ are conjugate provided

(3.4)
$$b_1(k, j) = b(k, k-j+1)$$
 $(1 \le j \le k)$.

Substituting from (3.4) in the second of (3.3) we get

$$f_{1,k}(x) = \sum_{j=1}^{k} b(k, k-j+1) {x+j-1 \choose 2k} = \sum_{j=1}^{k} b(k, j) {x+k-j \choose 2k}$$
$$= \sum_{j=1}^{k} b(k, j) {-x+k+j-1 \choose 2k}.$$

Thus $f_{1,k}(-x+k) = \sum_{j=1}^{k} b(k, j) {x+j-1 \choose 2k}$, so that

(3.5)
$$f_{1,k}(-x+k) = f_k(x)$$
 $(k=1, 2, ...).$

Conversely if we assume (3.5) then the above steps can be reversed to get (3.4).

This proves the following

Theorem. Two sequences of polynomials $\{f_k(x)\}$, $\{f_{1,k}(x)\}$ that satisfy (3.1), (3.2) and (3.2)' are conjugate if and only if (3.5) holds.

Corollary. The sequence $\{f_k(x)\}\$ is self-conjugate if and only if

(3.6)
$$f_k(-x+k) = f_k(x)$$
 $(k = 1, 2, ...)$

or equivalently

(3.7)
$$b(k, k-j+1) = b(k, j) \quad (1 \le j \le k).$$

4. As an example illustrating the corollary we take

$$(4.1) f_k(x) = \binom{x}{k} \binom{x-1}{k}.$$

It is easily verified that $f_k(x)$ satisfies (3.6). Put

(4.2)
$${x \choose k} {x-1 \choose k} = \sum_{j=1}^k b(k, j) {x+j-1 \choose 2k}.$$

Multiply both sides of (4.2) by $(x-k)(x-k-1)/(k+1)^2$. Using the identity

$$(x-k)(x-k-1) = (x+j-2k-1)(x+j-2k-2) + 2(k-j+1)(x+j-2k-1) + (k-j)(k-j+1),$$

we find after some manipulation that b(k, j) satisfies the recurrence

(4.3)
$$b(k+1, j) = (k-j+2)(k-j+3)b(k, j-2) + 2(k+j)(k-j+2)b(k, j-1) + (k+j)(k+j+1)b(k, j).$$

Also, by (3.6), we have

$$(4.4) b(k, k-j+1) = b(k, j) (1 \le j \le k).$$

An explicit formula for b(k, j) is obtained as a special case of the following general result [3, §7].

Let f(x) be an arbitrary polynomial of degree k and put

(4.5)
$$f(x+y-1) = \sum_{j=0}^{k} {x+j-1 \choose k} C_{k,j}(y).$$

Then

(4.6)
$$C_{k,j}(y) = \sum_{t=0}^{j} (-1)^{k-t} {k+1 \choose t} f(y-j+t-1)$$

and conversely.

In (4.5) replace k by 2k and take y = 1. Thus (4.5) becomes

$$f(x) = \sum_{j=1}^{k} {x+j-1 \choose 2k} C_{2k,j}(1) \text{ and } C_{r}(x_{k,j}(1)) = \sum_{t=0}^{j} (-1)^{t} {2k+1 \choose t} f(-j+t).$$

Finally, taking $f(x) = {x \choose k} {x-1 \choose k}$, we get

(4.7)
$$b(k, j) = \sum_{t=0}^{j} (-1)^{t} {2k+1 \choose t} {-j+t \choose k} {-j+t-1 \choose k}$$

or, if we prefer,

(4.8)
$$b(k, j) = \sum_{t=1}^{j} (-1)^{j-t} {2k+1 \choose j-t} {k+t \choose k} {k+t-1 \choose k} \quad (k \ge 1).$$

The sum on the right is Saalschützian [1, p. 9] and we find that

(4.9)
$$b(k, j) = \frac{k+1}{k} {k \choose j} {k \choose j-1} = {k+1 \choose j} {k-1 \choose j-1}.$$

Therefore finally we have

$$(4.10) \binom{x}{k} \binom{x-1}{k} = \sum_{j=1}^{k} \frac{k+1}{k} \binom{x+j-1}{2k} \binom{k}{j} \binom{k}{j-1} = \sum_{j=0}^{k-1} \binom{x+j}{2k} \binom{k+1}{j+1} \binom{k-1}{j}.$$

The identity (4.10) can be verified by SAALSCHÜTZ's theorem.

REFERENCES

- 1. W. N. BAILEY: Generalized Hypergeometric Series. Cambridge 1935.
- 2. L. CARLITZ: Note on the numbers of Jordan and Ward. Duke Math. J. 38 (1971), 783-790.
- 3. L. CARLITZ: Polynomial representations and compositions I. Houston Journal of Math. 2 (1976), 23-48.
- 4. L. CARLITZ: Some numbers related to the Stirling numbers of the first and second kind. These Publications № 554—№ 576 (1976), 49—55.
- 5. H. W. GOULD: Stirling number representation problems. Proc. Amer. Math. Soc. 11 (1960), 447—451.
- 6. C. JORDAN: Calculus of finite differences. New York 1947.
- 7. M. Ward: The representation of Stirling's numbers and Stirling's polynomials as sum of factorials. Amer. Journal of Math. 56 (1934), 87—95.

Duke University
Department of Mathematics
Durham, N. C. 27706
U.S.A.

NEKE PRIMEDBE O STIRLINGOVIM BROJEVIMA

$$L. c^{y-ij}$$

U ovom radu uopštene su neke formule za Stirlingove brojeve prve i druge vrste.