673. SOME FUNCTIONAL EQUATIONS WITH SEVERAL UNKNOWN FUNCTIONS

Radovan R. Janić and Josip E. Pečarić

In this paper we shall give some generalizations of some results obtained in papers [1] and [2]. We shall also provide some analogous results.

1. In this part we shall use the following notations

$$
\prod_{i=1}^{r} x_{i}=\prod_{\substack{i=1 \\ i \neq k}}^{r} x_{i}, \sum_{i=1}^{r} x_{i}=\sum_{\substack{i=1 \\ i \neq k}}^{r} x_{i}, \exp _{a} u=a^{u}
$$

First, we will consider the following functional equation

$$
\begin{equation*}
f\left(x_{1} \cdots x_{r}\right)=\sum_{k=1}^{r} x_{k}^{\alpha} f_{k}\left(\prod_{i=1}^{r} x_{i}\right)+d x_{1}^{\alpha} \cdots x_{r}^{\alpha} \quad(d, \alpha \in \mathbf{R}) \tag{1}
\end{equation*}
$$

The continuous solution of this equation is given by

$$
\begin{equation*}
\left.f(x)=x^{\alpha}(r-1) C \log x+\sum_{i=1}^{r} C_{i}-\frac{d}{r-1}\right) \tag{2}
\end{equation*}
$$

$$
f_{k}(x)=x^{\alpha}\left(C \log x+C_{k}-\frac{d}{r-1}\right) \quad(k=1, \ldots, r)
$$

where $C, C_{k}(k=1, \ldots, r)$ are real constants.
Indeed, by substitutions of

$$
F(x)=f\left(x^{1 /(r-1)}\right) / x^{\alpha /(r-1)}, F_{k}(x)=f_{k}(x) / x^{\alpha}, X_{k}=\prod_{i=1}^{r} x_{i} \quad(k=1, \ldots, r)
$$

from (1) we obtain

$$
\begin{equation*}
F\left(X_{1} \cdots X_{r}\right)=F_{1}\left(X_{1}\right)+\cdots+F_{r}\left(X_{r}\right)+d \tag{3}
\end{equation*}
$$

The continuous solution of (3) is (see [1], equation (4.1))

$$
\begin{equation*}
F(x)=C \log x+\sum_{i=1}^{r} C_{i}-\frac{d}{r-1}, F_{k}(x)=C \log x+C_{k}-\frac{d}{r-1} \quad(k=1, \ldots, r) \tag{4}
\end{equation*}
$$

wherefrom we obtain (2).
Functional equation

$$
\begin{equation*}
f\left(x_{1}+\cdots+x_{r}\right)=\sum_{k=1}^{r} \exp _{a} x_{k} f_{k}\left(\sum_{i=1}^{r} x_{i}\right)+d \exp _{a} \sum_{i=1}^{r} x_{i} \tag{5}
\end{equation*}
$$

has a solution

$$
\begin{equation*}
f(x)=a^{x}\left(C(r-1) x+\sum_{k=1}^{r} C_{k}-\frac{d}{r-1}\right) \tag{6}
\end{equation*}
$$

$$
f_{k}(x)=a^{x}\left(C x+C_{k}-\frac{d}{r-1}\right) \quad(k=1, \ldots, r)
$$

where C, C_{1}, \ldots, C_{r} are real constants. This result is a generalization of equation (1.12.2 ${ }^{\circ}$) from [3].

Functional equation

$$
\begin{equation*}
f\left(\prod_{i=1}^{r} x_{i}\right)=\prod_{k=1}^{r}\left(f_{k}\left(\prod_{i=1}^{r} x_{t}\right)^{x_{k}^{\alpha}}\right) \exp _{d}\left(\prod_{i=1}^{r} x_{i}^{\alpha}\right) \tag{7}
\end{equation*}
$$

has a solution

$$
\begin{align*}
& f(x)=\exp _{d}\left(-\frac{x^{\alpha}}{r-1}\right)\left(C_{1} \cdots C_{r} x^{r-1}\right)^{C x^{\alpha}} \\
& f_{k}(x)=\exp _{d}\left(-\frac{x^{\alpha}}{r-1}\right)\left(C_{k} x\right)^{C x^{\alpha}} \quad(k=1, \ldots, r) \tag{8}
\end{align*}
$$

where $C, C_{1}>0, \ldots, C_{r}>0$ are real constants.
Functional equation

$$
\begin{equation*}
f\left(x_{1}+\cdots+x_{r}\right)=\prod_{k=1}^{r}\left(f_{k}\left(\sum_{i=1}^{r} x_{i}\right)^{\exp _{a} x_{k}}\right) \exp _{d}\left(\exp _{a} \sum_{i=1}^{r} x_{i}\right) \tag{9}
\end{equation*}
$$

has a solution given by

$$
f(x)=\exp _{d}\left(-\frac{a^{x}}{r-1}\right)\left(C_{1} \cdots C_{r} a^{(r-1) x}\right)^{C a^{x}}
$$

$$
\begin{equation*}
f_{k}(x)=\exp _{d}\left(-\frac{a^{x}}{r-1}\right)\left(C_{k} a^{x}\right)^{C a_{a}^{x}} \quad(k=1, \ldots, r) \tag{10}
\end{equation*}
$$

where $C, C_{1}>0, \ldots, C_{r}>0$ are real constants.
Functional equation

$$
\begin{equation*}
f\left(\prod_{i=1}^{r} x_{i}\right)=\prod_{k=1}^{r}\left(f_{k}\left(x_{k}\right)^{\prod_{i=1}^{r} x_{i}^{\alpha}}\right) \exp _{d}\left(\prod_{i=1}^{r} x_{i}^{\alpha}\right) \tag{11}
\end{equation*}
$$

has a solution

$$
\begin{align*}
f(x) & =\exp _{d}\left(-\frac{x^{\alpha}}{r-1}\right)\left(C_{1} \cdots C_{r} x\right)^{C x^{\alpha}} \tag{12}\\
f_{k}(x) & =\exp _{d}\left(-\frac{x^{\alpha}}{r-1}\right)\left(C_{k} x\right)^{C x^{\alpha}} \quad(k=1, \ldots, r)
\end{align*}
$$

where $C, C_{1}>0, \ldots, C_{r}>0$ are arbitrary constants.
Functional equation

$$
\begin{equation*}
f\left(\prod_{i=1}^{r} x_{i}\right)=\sum_{k=1}^{r}\left(f_{k}\left(x_{k}\right) \prod_{i=1}^{r} x_{i}^{\alpha}\right)+d \prod_{i=1}^{r} x_{i} \tag{13}
\end{equation*}
$$

has a solution

$$
f(x)=x^{\alpha}\left(C \log \left(C_{1} \cdots C_{r} x\right)-\frac{d}{r-1}\right),
$$

$$
\begin{equation*}
f_{k}(x)=x^{\alpha}\left(C \log \left(C_{k} x\right)-\frac{d}{r-1}\right) \quad(k=1, \ldots, r) \tag{14}
\end{equation*}
$$

where $C, C_{1}>0, \ldots, C_{r}>0$ are arbitrary constants.
Functional equation

$$
\begin{equation*}
\left.f\left(\sum_{i=1}^{r} x_{i}\right)=\prod_{k=1}^{r}\left(f_{k}\left(x_{k}\right)^{\operatorname{expa}^{(}\left(\sum_{i=1}^{r} x_{i}\right.}\right)\right) \exp _{d}\left(\exp _{a} \sum_{i=1}^{r} x_{i}\right) \tag{15}
\end{equation*}
$$

has a solution

$$
f(x)=\exp _{d}\left(-\frac{a^{x}}{r-1}\right)\left(C_{1} \cdots C_{r} a^{x}\right)^{C a^{x}}
$$

$$
\begin{equation*}
f_{k}(x)=\exp _{d}\left(-\frac{a^{x}}{r-1}\right)\left(C_{k} a^{x}\right)^{c a^{x}} \quad(k=1, \ldots, r) \tag{16}
\end{equation*}
$$

where $C, C_{1}>0, \ldots, C_{r}>0$ are arbitrary constants.
Functional equation

$$
\begin{equation*}
f\left(\sum_{i=1}^{r} x_{i}\right)=\sum_{k=1}^{r} f_{k}\left(x_{k}\right) \exp _{a}\left(\sum_{i=1}^{r} x_{i}\right)+d \exp _{a} \sum_{i=1}^{r} x_{i} \tag{17}
\end{equation*}
$$

has a solution given by

$$
\begin{equation*}
f(x)=a^{x}\left(C x+\sum_{i=1}^{r} C_{i}-\frac{d}{r-1}\right), f_{k}(x)=a^{x}\left(C x+C_{k}-\frac{d}{r-1}\right) \quad(k=1, \ldots, r) \tag{18}
\end{equation*}
$$

where C, C_{1}, \ldots, C_{r} are arbitrary real constants.
2. Now, we shall quote some extension of results from [1], i. e., we shall consider the following functional equations:

$$
\begin{align*}
& f(x y)=x^{\alpha} h(y)+y^{\beta} g(x)+d x^{\alpha} y^{\beta}, \tag{19}\\
& f(x y)=x^{\alpha} g(y)+y^{\beta} f(x)+d x^{\alpha} y^{\beta}, \tag{20}\\
& f(x y)=x^{\alpha} f(y)+y^{\beta} f(x)+d x^{\alpha} y^{\beta}, \tag{21}
\end{align*}
$$

where $\alpha, \beta, d \in \mathbf{R}$. In [1], the solutions of (19) and (20) for $d=0$ and $\alpha \neq \beta$, and (21) for $\alpha \neq \beta$ are given.

The solution of functional equation (19) is:

$$
\begin{align*}
& f(x)= \begin{cases}A\left(x^{\beta}-x^{\alpha}\right)+B x^{\beta}, & \text { for } \alpha \neq \beta, \\
x^{\alpha}(A \log x+B), & \text { for } \alpha=\beta ;\end{cases} \\
& g(x)= \begin{cases}A\left(x^{\beta}-x^{\alpha}\right)+B x^{\beta}-C x^{\alpha}-d x^{\alpha}, & \text { for } \alpha \neq \beta, \\
x^{\alpha}(A \log x+B-C-d), & \text { for } \alpha=\beta,\end{cases} \tag{22}\\
& h(x)= \begin{cases}A\left(x^{\beta}-x^{\alpha}\right)+C x^{\beta}, & \text { for } \alpha \neq \beta, \\
x^{\alpha}(A \log x+C), & \text { for } \alpha=\beta ;\end{cases}
\end{align*}
$$

where A, B and C are real constants.

Indeed, the solution of functional equation

$$
\begin{equation*}
f(x y)=x^{\alpha} u(y)+y^{\beta} g(x) \tag{23}
\end{equation*}
$$

for $\alpha \neq \beta$ is given in [1]. Using the substitution

$$
u(y)=h(y)+d y^{\beta}
$$

from solution of (23) we obtain (22) for $\alpha \neq \beta$. Using (2) (or (14)) for $r=2$, we can easily get (22) for $\alpha=\beta$.

The solution of equation (20) is

$$
\begin{align*}
& f(x)=\left\{\begin{array}{l}
A\left(x^{\beta}-x^{\alpha}\right)+B x^{\beta}, \text { for } \alpha \neq \beta, \\
x^{\alpha}(A \log x+B), \text { for } \alpha=\beta ;
\end{array}\right. \\
& g(x)= \begin{cases}A\left(x^{\beta}-x^{\alpha}\right)-d x^{\beta}, & \text { for } \alpha \neq \beta, \\
x^{\alpha}(A \log x-d), & \text { for } \alpha=\beta,\end{cases} \tag{24}
\end{align*}
$$

where A and B are real constants.
The solution of equation (21) is

$$
f(x)= \begin{cases}A\left(x^{\beta}-x^{\alpha}\right)-d x^{\beta}, & \text { for } \alpha \neq \beta, \tag{25}\\ x^{\alpha}(A \log x-d), & \text { for } \alpha=\beta\end{cases}
$$

where A is a real constant.
Using the previous results, we can get the solution of the following functional equation:

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{n} f_{i j}\left(x_{i} y_{j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(x_{i}^{\alpha_{i}} h_{i j}\left(y_{j}\right)+y_{j}{ }^{\beta} g_{i j}\left(x_{i}\right)+d_{i j} x_{i}^{\alpha_{i}} y_{j}^{\beta_{j}}\right) \tag{26}
\end{equation*}
$$

where $\alpha_{i}, \beta_{j}, d_{i j} \in \mathbf{R}(1 \leqq i \leqq m, 1 \leqq j \leqq n)$, i. e. we have

$$
\begin{align*}
& f_{i j}(x)= \begin{cases}A_{i j}\left(x^{\beta_{j}}-x^{\alpha_{i}}\right)+B_{i j} x^{\beta_{j}}, & \text { for } \alpha_{i} \neq \beta_{j}, \\
x^{\alpha_{i}}\left(A_{i j} \log x+B_{i j}\right), & \text { for } \alpha_{i}=\beta_{j} ;\end{cases} \\
& g_{i j}(x)= \begin{cases}A_{i j}\left(x^{\beta_{j}}-x^{\alpha_{i}}\right)+B_{i j} x^{\beta_{j}}-\left(C_{i j}+d_{i j}\right) x^{\alpha_{i}}, \text { for } \alpha_{i} \neq \beta_{j}, \\
x^{\alpha_{i}}\left(A_{i j} \log x+B_{i j}-d_{i j}-C_{i j}\right), \text { for } \alpha_{i}=\beta_{j},\end{cases} \tag{27}\\
& h_{i j}(x)= \begin{cases}A_{i j}\left(x^{\beta_{j}}-x_{i}^{\alpha_{i}}\right)+C_{i j} x^{\beta_{j}}, & \text { for } \alpha_{i} \neq \beta_{j}, \\
x^{\alpha_{i}}\left(A_{i j} \log x+C_{i j}\right), & \text { for } \alpha_{i}=\beta_{j} ;\end{cases}
\end{align*}
$$

for $1 \leqq i \leqq m, 1 \leqq j \leqq n$, where $A_{i j}, B_{i j}$ and $C_{i j}$ are real constants.
In the special cases, functional equations

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i} y_{j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(x_{i}^{\alpha} h\left(y_{j}\right)+y_{j}^{\beta} g\left(x_{i}\right)+d x_{i}^{\alpha} y_{j}^{\beta}\right) \tag{28}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i} y_{j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(x_{i}^{\alpha} g\left(y_{j}\right)+y_{j}^{\beta} f\left(x_{i}\right)+d x_{i}^{\alpha} y_{j}^{\beta}\right), \tag{29}\\
& \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i} y_{j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(x_{i}^{\alpha} f\left(y_{j}\right)+y_{j}^{\beta} f\left(x_{i}\right)+d x_{i}^{\alpha} y_{j}^{\beta}\right), \tag{30}
\end{align*}
$$

have solutions (22), (24) and (25) respectively.
Now, we shall give some results, which are analogous to functional equation (19).

Functional equation

$$
\begin{equation*}
f(x+y)=a^{x} h(y)+b^{y} g(x)+d a^{x} b^{y} \tag{31}
\end{equation*}
$$

has a solution

$$
\begin{align*}
& f(x)= \begin{cases}A\left(b^{x}-a^{x}\right)+B b^{x}, & \text { for } a \neq b, \\
a^{x}(A x+B), & \text { for } a=b ;\end{cases} \\
& g(x)= \begin{cases}A\left(a^{x}-b^{x}\right)+B b^{x}-C a^{x}-d a^{x}, & \text { for } a \neq b, \\
a^{x}(A x+B-C-d), & \text { for } a=b ;\end{cases} \tag{32}\\
& h(x)= \begin{cases}A\left(b^{x}-a^{x}\right)+C b^{x}, & \text { for } a \neq b, \\
a^{x}(A x+C), & \text { for } a=b ;\end{cases}
\end{align*}
$$

where A, B and C are real constants.
Indeed, using the substitutions:
$x=\log u, y=\log v, f(\log x)=F(x), h(\log x)=H(x)$ and $g(\log x)=G(x)$,
(31) becomes

$$
F(u v)=a^{\log u} H(v)+b^{\log v} G(u)+d a^{\log u} b^{\log v},
$$

i.e.

$$
F(u v)=u^{\log a} H(v)+v^{\log b} G(u)+d u^{\log a} v^{\log b} .
$$

Using the solution of equation (21), we obtain (32).
Analogously, we can get the following results:
Functional equation

$$
\begin{equation*}
f(x y)=h(y)^{x^{\alpha}} g(x)^{y^{\beta}} d^{x^{\alpha} y^{\beta}} \tag{33}
\end{equation*}
$$

has a solution

$$
\begin{align*}
& f(x)= \begin{cases}A^{\left(x^{\beta}-x^{\alpha}\right)} B^{x^{\beta}}, & \text { for } \alpha \neq \beta, \\
\left(B x^{D}\right)^{\alpha}, & \text { for } \alpha=\beta ;\end{cases} \\
& g(x)= \begin{cases}A^{\left(x^{\beta}-x^{\alpha}\right)} B^{x^{\beta}}(C d)^{-x^{\alpha}}, & \text { for } \alpha \neq \beta, \\
\left(B C^{-1} d^{-1} x^{D}\right)^{x^{\alpha}}, & \text { for } \alpha=\beta ;\end{cases} \tag{34}\\
& h(x)= \begin{cases}A^{\left(x^{\beta}-x^{\alpha}\right)} C^{x^{\beta}}, & \text { for } \alpha \neq \beta, \\
\left(C x^{D}\right)^{x^{\alpha}}, & \text { for } \alpha=\beta ;\end{cases}
\end{align*}
$$

where $A>0, B>0, C>0$ and D are arbitrary constants.

Functional equation

$$
\begin{equation*}
f(x+y)=h(y)^{a^{x}} g(x)^{b^{y}} d^{a^{x} b^{y}} \tag{35}
\end{equation*}
$$

has a solution

$$
\begin{align*}
& f(x)= \begin{cases}A^{\left(b^{x}-a^{x}\right)} B^{b^{x}}, & \text { for } a \neq b, \\
\left(B A^{x}\right)^{a^{x}}, & \text { for } a=b ;\end{cases} \\
& g(x)= \begin{cases}A^{\left(b^{x}-a^{x}\right)} B^{b^{x}}(C d)^{-a^{x}}, & \text { for } a \neq b, \\
\left(B C^{-1} d^{-1} A^{x}\right)^{a^{x}}, & \text { for } a=b ;\end{cases} \tag{36}\\
& h(x)= \begin{cases}A^{\left(b^{x}-a^{x}\right)} C^{b^{x}}, & \text { for } a \neq b, \\
\left(C A^{x}\right)^{a^{x}}, & \text { for } a=b ;\end{cases}
\end{align*}
$$

where $A>0, B>0$ and $C>0$ are real constants.
Similarly, we can formulate the results analogous to functional equations (20), (21), (26), (28), (29) and (30).

REFERENCES

1. B. Martić et R. R. Janić: Sur quelques généralisations des équations fonctionnelles These Publications № 602 - № 633 (1978), 223-228.
2. Pl. Kannappan: An application of differential equation in information theory. Glasnik Matematički 14 (34) (1979), 269-274.
I. I. Stamate: Équations fonctionnelles contenant plusieurs fonctions inconnues. These Publications № 354 - № 356 (1971), 123-156.
