672. ON THE UNIVALENCE OF RATIONAL FUNCTIONS*

Dragoslav S. Mitrinović

1. Consider the function

$$
\begin{equation*}
z \mapsto f(z)=\frac{z}{\left(1+z^{n}\right)^{k}} \quad(k, n=1,2, \ldots), \tag{1}
\end{equation*}
$$

and suppose that $n k-1>0$, which excludes the case $f(z)=\frac{z}{1+z}$, whose domain of univalence is the whole z-plane.

The function f is regular in the disk $|z|<1$. Let z_{1} and $z_{2}\left(z_{1} \neq z_{2}\right)$ be arbitrary points of the disk $|z|<r(r \leqq 1)$, i.e. let $\left|z_{1}\right|<r$ and $\left|z_{2}\right|<r$, and start with the difference

$$
f\left(z_{1}\right)-f\left(z_{2}\right)=\frac{z_{1}\left(1+z_{2}^{n}\right)^{k}-z_{2}\left(1+z_{1}^{n}\right)^{k}}{\left(1+z_{1}^{n}\right)^{k}\left(1+z_{2}^{n}\right)^{k}} .
$$

By a repeated use of the inequalities

$$
|a|-|b| \leqq|a+b| \leqq|a|+|b|
$$

we get

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|>\left|z_{1}-z_{2}\right| \frac{A}{\left(1+r^{n}\right)^{2 k}},
$$

where

$$
\begin{aligned}
A & \text { def } \\
= & -\binom{k}{1}(n-1) r^{n}-\binom{k}{2}(2 n-1) r^{2 n}-\cdots-\binom{k}{k}(k n-1) r^{k n} \\
& \equiv\left(1-(n k-1) r^{n}\right)\left(1+r^{n}\right)^{k-1} .
\end{aligned}
$$

If $A>0$, which is fulfilled for $r<1 / \sqrt[n]{n k-1}$, the implication

$$
z_{1} \neq z_{2} \Rightarrow f\left(z_{1}\right) \neq f\left(z_{2}\right)
$$

is valid.
Since the zeroes $z_{p}(p=1, \ldots, n)$ of the function f^{\prime} are such that $\left|z_{p}\right|=1 / \sqrt[n]{n k-1}$, we arrive at the result:
Theorem 1. The function $z \mapsto \frac{z}{\left(1+z^{n}\right)^{k}}(n, k=1,2, \ldots)$ is univalent in the disk $|z|<r$, with the maximal radius r given by $\frac{1}{\sqrt[n]{n k-1}}$.

[^0]Remark. The function $z \mapsto \frac{z}{\left(1+a z^{n}\right) k}$, by means of the substitution $z \sqrt[n]{a}=t$, reduces to the function $t \mapsto \frac{t / \sqrt[n]{a}}{\left(1+t^{n}\right)^{k}}$ which we already considered.
2. Consider now the function

$$
\begin{equation*}
z \mapsto f(z)=\frac{z}{1+a_{1} z+\cdots+a_{k} z^{k}} \quad\left(a_{k} \neq 0\right) \tag{2}
\end{equation*}
$$

which contains as a particular case the function (1).
Using the same procedure as in Section 1, we find
(3) $f\left(z_{1}\right)-f\left(z_{2}\right)=\left(z_{1}-z_{2}\right) \frac{1-z_{1} z_{2}\left(a_{2}+a_{3}\left(z_{1}+z_{2}\right)+\cdots+a_{k}\left(z_{1}^{k-2}+z_{1}^{k-3} z_{2}+\cdots+z_{2}^{k-2}\right)\right)}{\left(1+a_{1} z_{1}+\cdots+a_{k} z_{1}^{k}\right)\left(1+a_{1} z_{2}+\cdots+a_{k} z_{2}{ }^{k}\right)}$,

$$
\begin{equation*}
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|>\left|z_{1}-z_{2}\right| \frac{1-r^{2}\left(\left|a_{2}\right|+2 r\left|a_{3}\right|+\cdots+(k-1)\left|a_{k}\right| r^{k-2}\right)}{\left(1+\left|a_{1}\right| r+\cdots+\left|a_{k}\right| r^{k}\right)^{2}} \tag{4}
\end{equation*}
$$

Here again z_{1} and z_{2} denote arbitrary points of $|z|<r$, where r should be chosen so that the polynomial $P(z)=1+a_{1} z+\cdots+a_{k} z^{k}$ has no zeroes in the disk $|z|<r$.

If

$$
\begin{equation*}
1-\left|a_{2}\right| r^{2}-2\left|a_{3}\right| r^{3}-\cdots-(k-1)\left|a_{k}\right| r^{k}>0 \tag{5}
\end{equation*}
$$

then the expression on the right hand side of (4) is positive.
Hence, the implication $z_{1} \neq z_{2} \Rightarrow f\left(z_{1}\right) \neq f\left(z_{2}\right)$ is valid.
Since

$$
f^{\prime}(z)=\frac{1-a_{2} z^{2}-2 a_{3} z^{3}-\cdots-(k-1) a_{k} z^{k}}{\left(1+a_{1} z+\cdots+a_{k} z^{k}\right)^{2}},
$$

the zeroes of the function f^{\prime} are given by the equation

$$
\begin{equation*}
(k-1) a_{k} z^{k}+\cdots+2 a_{3} z^{3}+a_{2} z^{2}-1=0 . \tag{6}
\end{equation*}
$$

In order to determine the maximal radius of univalence of the function (2), it is necessary to know suitable informations about roots of equations (6) and

$$
\begin{equation*}
1-\left|a_{2}\right| r^{2}-2\left|a_{3}\right| r^{3}-\cdots-(k-1)\left|a_{k}\right| r^{k}=0 \tag{7}
\end{equation*}
$$

This equation has exactly one positive root, which we denote by r_{0}. If

$$
\begin{equation*}
\left|a_{1}\right| \leqq\left|a_{3}\right| r_{0}^{2}+2\left|a_{4}\right| r_{0}^{3}+\cdots+(k-2)\left|a_{k}\right| r_{0}^{k-1} \tag{8}
\end{equation*}
$$

the polynomial P has no zeroes in the disk $|z|<r_{0}$ because, for $|z|<r_{0}$,

$$
\begin{aligned}
|P(z)| & \geqq 1-\left|a_{1}\right||z|-\left|a_{2}\right||z|^{2}-\cdots-\left|a_{k}\right||z|^{k} \\
& >1-\left|a_{1}\right| r_{0}-\left|a_{2}\right| r_{0}^{2}-\cdots-\left|a_{k}\right| r_{0}^{k} \\
& \geqq 1-\left|a_{2}\right| r_{0}^{2}-2\left|a_{3}\right| r_{0}^{3}-\cdots-(k-1)\left|a_{k}\right| r_{0}^{k} .
\end{aligned}
$$

If a_{2}, \ldots, a_{k} are real nonnegative numbers, then r_{0} is a root of the equation (6), too. On the basis of previous considerations one can conclude the following:

Theorem 2. If the condition (8) is satisfied, the unique positive root of (7) is a radius of univalence of the function (2). If, in addition, $a_{2}, \ldots, a_{k} \geqq 0$, then r_{0} is the maximal radius of univalence of the function (2).

If a_{1}, \ldots, a_{k} are positive numbers, then the equation (6) has only one positive root which is, at the same time, a positive root of (7).

A special case of the function (2) is

$$
\begin{equation*}
f(z)=\frac{z}{1+z+z^{2}} \tag{9}
\end{equation*}
$$

the equations (5) and (6) read: $r^{2}-1=0$ and $z= \pm 1$ respectively, which implies $r=1$ (the other root is discarded) and $z= \pm 1$ (in these points the function f is not univalent). The function f has two poles $z=\frac{1}{2}(-1 \pm i \sqrt{3})$ which lie on the circle $|z|=1$.

Hence, the maximal radius of univalence of the function f, given by (9), is $r=1$.
3. In Marden's monograph ([1], p. 126, exercise 2) the following theorem is given:

All the zeroes of polynomial $c_{0}+c_{1} z+\cdots+c_{k} z^{k}\left(c_{0} \neq 0\right)$ lie on or outside the circle

$$
|z|=\min _{p=1, \ldots, k} \frac{\left|c_{0}\right|}{\left|\boldsymbol{c}_{0}\right|+\left|c_{p}\right|} .
$$

According to this theorem, all the roots of the equtions (5) and (6) lie in the region $|z| \geqq r$, where

$$
\begin{equation*}
r=\min \left(\frac{1}{1+\left|a_{2}\right|}, \frac{1}{1+2\left|a_{3}\right|}, \ldots, \frac{1}{1+(k-1)\left|a_{k}\right|}\right) . \tag{10}
\end{equation*}
$$

If $P(z)$ has no zeroes in the disk $|z|<r$, a radius of univalence of the function (2) is given by (10), but that r need not be the maximal radius.

Apply this theorem to the function

$$
z \mapsto f(z)=\frac{z}{1+z+z^{2}+\cdots+z^{k}} .
$$

The zeroes of the polynomial $P(z)=1+z+z^{2}+\cdots+z^{k}$ are given by

$$
z_{n}=e^{\frac{2 n \pi i}{k+1}} \quad(n=1, \ldots, k)
$$

and they all lie on the circle $|z|=1$.
The equations (5) and (6) in this case read

$$
\begin{aligned}
& 1-r^{2}-2 r^{3}-\cdots-(k-1) r^{k}=0 \\
& 1-z^{2}-2 z^{3}-\cdots-(k-1) z^{k}=0
\end{aligned}
$$

respectively. Applying the mentioned theorem, we get

$$
r=\min \left(\frac{1}{1+0}, \frac{1}{1+2}, \ldots, \frac{1}{1+(k-1)}\right)=\frac{1}{k} .
$$

Hence, the function f is univalent in the disk $|z|<\frac{1}{k}$, but the radius of univalence is not maximal. After all, we applied a theorem which does not give the best possible result.
4. If we apply the procedure from Section 1 and the theorem from Section 3 to the function f given by

$$
\begin{equation*}
f(z)=\frac{b_{0}+b_{1} z+b_{2} z^{2}}{a_{0}+a_{1} z+a_{2} z^{2}}, \tag{11}
\end{equation*}
$$

we arrive at the result:
If $a_{0} b_{1}-a_{1} b_{0} \neq 0$ and $a_{0} \neq 0$, the function (11) is univalent in the disk $|z|<\rho=\min \left(r_{1}, r_{2}\right)$, where

$$
\begin{gathered}
r_{1}=\min \left(\frac{\left|a_{0}\right|}{\left|a_{0}\right|+\left|a_{1}\right|}, \frac{\left|a_{0}\right|}{\left|a_{0}\right|+\left|a_{2}\right|}\right), \\
r_{2}=\min \left(\frac{\left|a_{0} b_{1}-a_{1} b_{0}\right|}{\left|a_{0} b_{1}-a_{1} b_{0}\right|+2\left|a_{0} b_{2}-a_{2} b_{0}\right|}, \frac{\left|a_{0} b_{1}-a_{1} b_{0}\right|}{\left|a_{0} b_{1}-a_{1} b_{0}\right|+\left|a_{1} b_{2}-a_{2} b_{1}\right|}\right) .
\end{gathered}
$$

We cannot claim that p is the maximal radius of univalence.
5. Consider now the function f given by

$$
\begin{equation*}
f(z)=\frac{b_{0}+b_{1} z+b_{2} z^{2}+b_{3} z^{3}}{a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}} . \tag{12}
\end{equation*}
$$

The equations which correspond to the equations (5) and (6) in this case read

$$
\begin{gather*}
\left|\left(a_{0} b_{1}\right)\right|-2\left|\left(a_{0} b_{2}\right)\right| r-\left(3\left|\left(a_{0} b_{3}\right)\right|+\left|\left(a_{1} b_{2}\right)\right|\right) r^{2} \tag{13}\\
\\
-2\left|\left(a_{1} b_{3}\right)\right| r^{3}-\left|\left(a_{2} b_{3}\right)\right| r^{4}=0 \tag{14}\\
\left(a_{0} b_{1}\right)+2\left(a_{0} b_{2}\right) z+\left(3\left(a_{0} b_{3}\right)+\left(a_{1} b_{2}\right)\right) z^{2}+2\left(a_{1} b_{3}\right) z^{3}+\left(a_{2} b_{3}\right) z^{4}=0
\end{gather*}
$$

where we define

$$
\left(a_{i} b_{j}\right)=a_{i} b_{j}-a_{j} b_{i} \quad(i=0,1,2 ; j=1,2,3)
$$

To the polynomial $a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}$ corresponds:

$$
r_{1}=\min \left(\frac{\left|a_{0}\right|}{\left|a_{0}\right|+\left|a_{1}\right|}, \frac{\left|a_{0}\right|}{\left|a_{0}\right|+\left|a_{2}\right|}, \frac{\left|a_{0}\right|}{\left|a_{0}\right|+\left|a_{3}\right|}\right) \quad\left(a_{0} \neq 0\right)
$$

and to the polynomial of equation (13) corresponds:

$$
\begin{aligned}
& r_{2}=\min \left(\frac{\left|\left(a_{0} b_{1}\right)\right|}{\left|\left(a_{0} b_{1}\right)\right|+2\left|\left(a_{0} b_{2}\right)\right|}, \frac{\left|\left(a_{0} b_{1}\right)\right|}{\left|\left(a_{0} b_{1}\right)\right|+3\left(\left|\left(a_{0} b_{3}\right)\right|+\left|\left(a_{1} b_{2}\right)\right|\right)},\right. \\
& \left.\frac{\left|\left(a_{0} b_{1}\right)\right|}{\left|\left(a_{0} b_{1}\right)\right|+2\left|\left(a_{1} b_{3}\right)\right|}, \frac{\left|\left(a_{0} b_{1}\right)\right|}{\left|\left(a_{0} b_{1}\right)\right|+\left|\left(a_{2} b_{3}\right)\right|}\right), \quad\left(a_{0} b_{1}\right) \neq 0 .
\end{aligned}
$$

Since

$$
\left|3\left(a_{0} b_{3}\right)+\left(a_{1} b_{2}\right)\right| \leq 3\left|\left(a_{0} b_{3}\right)\right|+\left|\left(a_{1} b_{2}\right)\right|,
$$

r_{2} also corresponds to the polynomial of equation (14).

The function (12) is univalent in the disk

$$
|z|<p=\min \left(r_{1}, r_{2}\right)
$$

6. Consider now the most general rational function

$$
\begin{equation*}
z \mapsto f(z)=\frac{\sum_{t=0}^{m} b_{i} z^{i}}{\sum_{i=0}^{m} a_{i} z^{i}} \quad\left(a_{0} b_{1}-a_{1} b_{0} \neq 0 \text { and } a_{0} \neq 0\right), \tag{15}
\end{equation*}
$$

which contains the case when the polynomials in the numerator and denominator are not of the same degree, since it is enough to take $b_{m}=0, b_{m-1}=0, \ldots$, $b_{m-q}=0(q<m)$ or $a_{m}=0, a_{m-1}=0, \ldots, a_{m-p}=0(p<m)$. Formulas become symmetrical when the rational function f is considered in the form (15).

We suppose that the polynomials in the numerator and denominator have no common zeroes.

Let z_{1} and z_{2} be the points from the disk $|z|<r\left(\left|z_{1}\right|<r\right.$ and $\left.\left|z_{2}\right|<r\right)$ and consider difference

$$
\begin{equation*}
f\left(z_{1}\right)-f\left(z_{2}\right)=\frac{\sum_{i=0}^{m} b_{i} z_{1}^{i}}{\sum_{i=0}^{m} a_{i} z_{1}^{i}}-\frac{\sum_{i=0}^{m} b_{i} z_{2}^{i}}{\sum_{i=0}^{m} a_{i} z_{2}^{i}}=\frac{\sum_{i=0}^{m} b_{i} z_{1}{ }^{i} \cdot \sum_{i=0}^{m} a_{i} z_{2}{ }^{i}-\sum_{i=0}^{m} b_{i} z_{2}{ }^{i} \cdot \sum_{i=0}^{m} a_{i} z_{1}^{i}}{\sum_{i=0}^{m} a_{i} z_{1}^{i} \cdot \sum_{i=0}^{m} a_{i} z_{2}^{i}} . \tag{16}
\end{equation*}
$$

V. Kocić showed (private communication) that

$$
\begin{equation*}
\sum_{i=0}^{m} b_{i} z_{1}^{i} \cdot \sum_{i=0}^{m} a_{i} z_{2}^{i}-\sum_{i=0}^{m} b_{i} z_{2} \cdot \sum_{i=0}^{m} a_{i} z_{1}^{i}=\sum_{\substack{j=0 \\ i>j}}^{m}\left(a_{j} b_{i}\right) z_{1}^{j} z_{2}^{j}\left(z_{1}^{i-j}-z_{2}^{i-j}\right), \tag{S}
\end{equation*}
$$

where $\left(a_{j} b_{i}\right)=a_{j} b_{i}-a_{i} b_{j}$.
We shall now transform the sum on the right-hand side of (S) in the following way

$$
\begin{aligned}
& A \stackrel{\text { def }}{=} \sum_{\substack{i, j=0 \\
i>j}}^{m}\left(a_{j} b_{i}\right) z_{1}^{j} z_{2}^{j}\left(z_{1}^{i-j}-z_{2}^{i-j}\right) \\
&=\left(a_{0} b_{1}\right)\left(z_{1}-z_{2}\right)+\sum_{i=2}^{m}\left(a_{0} b_{i}\right)\left(z_{1}^{i}-z_{2}{ }^{i}\right)+\sum_{\substack{j, i=1 \\
i>j}}^{m}\left(a_{j} b_{i}\right) z_{1}^{j} z_{2}^{j}\left(z_{1}^{i-j}-z_{2}^{i-j}\right) \\
&=\left(z_{1}-z_{2}\right)\left(\left(a_{0} b_{1}\right)+\sum_{i=2}^{m}\left(a_{0} b_{i}\right)\left(z_{1}^{i-1}+z_{1}^{i-2} z_{2}+\cdots+z_{2}^{i-1}\right)\right) \\
&+\sum_{\substack{j, i=1 \\
i>j}}^{m}\left(a_{j} b_{i}\right) z_{1}^{j} z_{2}^{j}\left(z_{1}^{i-j-1}+z_{1}^{i-j-2} z_{2}+\cdots+z_{2}^{i-j-1}\right) .
\end{aligned}
$$

We have for A the following estimates

$$
\begin{gathered}
|A| \geqq\left|z_{1}-z_{2}\right|\left(\left|\left(a_{0} b_{1}\right)\right|-\sum_{i=2}^{m}\left|\left(a_{0} b_{i}\right)\right|\left(\left|z_{1}\right|^{i-1}+\left|z_{1}\right|^{i-2}\left|z_{2}\right|+\cdots+\left|z_{2}\right|^{i-1}\right)\right. \\
\left.\quad-\sum_{\substack{j, i=1 \\
i>j}}^{m}\left|\left(a_{j} b_{i}\right)\right|\left|z_{1}\right|^{j}\left|z_{2}\right| \mid\left(\left|z_{1}\right|^{i-j-1}+\left|z_{1}\right| i-j-2\left|z_{2}\right|+\cdots+\left|z_{2}\right|^{\mid-j-1}\right)\right) \\
>\left|z_{1}-z_{2}\right|\left(\left|\left(a_{0} b_{1}\right)\right|-\sum_{i=2}^{m} i\left|\left(a_{0} b_{i}\right)\right| r^{i-1}-\sum_{\substack{j, i=1 \\
i>j}}^{m}(i-j)\left|\left(a_{j} b_{i}\right)\right| r^{i+j-1}\right) .
\end{gathered}
$$

Let

$$
B \stackrel{\text { def }}{=}\left|\left(a_{0} b_{1}\right)\right|-\sum_{i=2}^{m} i\left|\left(a_{0} b_{i}\right)\right| r^{i-1}-\sum_{\substack{j, i=1 \\ i>j}}^{m}(i-j)\left|\left(a_{j} b_{i}\right)\right| r^{i+j-1} .
$$

If $B>0$ for sufficiently small r, we have

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|>\frac{\left|z_{1}-z_{2}\right| B}{\left(\left|a_{0}\right|+\left|a_{1}\right| r+\cdots+\left|a_{m}\right| r^{m}\right)^{2}},
$$

which yields the implication $z_{1} \neq z_{2} \Rightarrow f\left(z_{1}\right) \neq f\left(z_{2}\right)$.
The derivative f^{\prime} is given by

$$
\begin{aligned}
f^{\prime}(z) & =\frac{1}{\left(\sum_{i=0}^{m} a_{i} z^{i}\right)^{2}}\left(\sum_{i=1}^{m} i b_{i} z^{i-1} \cdot \sum_{i=0}^{m} a_{i} z^{i}-\sum_{i=0}^{m} b_{i} z^{i} \cdot \sum_{i=1}^{m} i a_{i} z^{i-1}\right) \\
& =\frac{1}{\left(\sum_{i=0}^{m} a_{i} z^{i}\right)^{2}}\left(\left(a_{0} b_{1}\right)+\sum_{i=2}^{m} i\left(a_{0} b_{i}\right) z^{i-1}+\sum_{\substack{j, i=1 \\
i>j}}^{m}(i-j)\left(a_{j} b_{i}\right) z^{i+j-1}\right) .
\end{aligned}
$$

The above formula was deduced in the following way. By considering particular cases it was noticed that the polynomial B and the polynomial

$$
C=\left(a_{0} b_{1}\right)+\sum_{i=2}^{m} i\left(a_{0} b_{i}\right) z^{i-1}+\sum_{\substack{j, i=1 \\ i>j}}^{m}(i-j)\left(a_{j} b_{i}\right) z^{i+j-1}
$$

are of such structure that, starting with B it is possible to form C. This hypothesis was then proved in the general case by mathematical induction.

Hence, the three equations $\sum_{i=0}^{m} a_{i} z^{i}=0, C=0$ and $B=0$, i.e.

$$
\begin{gather*}
a_{0}+a_{1} z+\cdots+a_{m} z^{m}=0, \tag{17}\\
\left(a_{0} b_{1}\right)+\sum_{i=2}^{m} i\left(a_{0} b_{i}\right) z^{i-1}+\sum_{\substack{j, i=1 \\
i>j}}^{m}(i-j)\left(a_{j} b_{i}\right) z^{i+j-1}=0, \tag{18}\\
\left|\left(a_{0} b_{1}\right)\right|-\sum_{i=2}^{m} i\left|\left(a_{0} b_{i}\right)\right| r^{i-1}-\sum_{\substack{j, i=1 \\
i>j}}^{m}(i-j)\left|\left(a_{j} b_{i}\right)\right| r^{i+j-1}=0 \tag{19}
\end{gather*}
$$

similarly as in Section 5 of this paper serve as a basis for determining a radius of univalence, or even the maximal radius of univalence of rational functional f defined by (15).

In particular, the equations (18) and (19) obtain the following forms: for $m=5$

$$
\begin{align*}
& \left(a_{0} b_{1}\right)+2\left(a_{0} b_{2}\right) z+\left(3\left(a_{0} b_{3}\right)+\left(a_{1} b_{2}\right)\right) z^{2}+\left(4\left(a_{0} b_{4}\right)+2\left(a_{1} b_{3}\right)\right) z^{3} \tag{20}\\
& \quad+\left(5\left(a_{0} b_{5}\right)+3\left(a_{1} b_{4}\right)+\left(a_{2} b_{3}\right)\right) z^{4}+\left(4\left(a_{1} b_{5}\right)+2\left(a_{2} b_{4}\right)\right) z^{5} \\
& \quad+\left(3\left(a_{2} b_{5}\right)+\left(a_{3} b_{4}\right)\right) z^{6}+2\left(a_{3} b_{5}\right) z^{7}+\left(a_{4} b_{5}\right) z^{8}=0,
\end{align*}
$$

$$
\begin{align*}
& \left|\left(a_{0} b_{1}\right)\right|-2\left|\left(a_{0} b_{2}\right)\right| r-\left(3\left|\left(a_{0} b_{3}\right)\right|+\left|\left(a_{1} b_{2}\right)\right|\right) r^{2}-\left(4\left|\left(a_{0} b_{4}\right)\right|+2\left|\left(a_{1} b_{3}\right)\right|\right) r^{3} \tag{21}\\
& \quad-\left(5\left|\left(a_{0} b_{5}\right)\right|+3\left|\left(a_{1} b_{4}\right)\right|+\left|\left(a_{2} b_{3}\right)\right|\right) r^{4}-\left(4\left|\left(a_{1} b_{5}\right)\right|+2\left|\left(a_{2} b_{4}\right)\right|\right) r^{5} \\
& \quad-\left(3\left|\left(a_{2} b_{5}\right)\right|+\left|\left(a_{3} b_{4}\right)\right|\right) r^{6}-2\left|\left(a_{3} b_{5}\right)\right| r^{7}-\left|\left(a_{4} b_{5}\right)\right| r^{8}=0
\end{align*}
$$

for $m=7$

$$
\begin{align*}
& \left(a_{0} b_{1}\right)+2\left(a_{0} b_{2}\right) z+\left(3\left(a_{0} b_{3}\right)+\left(a_{1} b_{2}\right)\right) z^{2}+\left(4\left(a_{0} b_{4}\right)+2\left(a_{1} b_{3}\right)\right) z^{3} \tag{22}\\
& +\left(5\left(a_{0} b_{5}\right)+3\left(a_{1} b_{4}\right)+\left(a_{2} b_{3}\right)\right) z^{4}+\left(6\left(a_{0} b_{6}\right)+4\left(a_{1} b_{5}\right)+2\left(a_{2} b_{4}\right)\right) z^{5} \\
& +\left(7\left(a_{0} b_{7}\right)+5\left(a_{1} b_{6}\right)+3\left(a_{2} b_{5}\right)+\left(a_{3} b_{4}\right)\right) z^{6} \\
& +\left(6\left(a_{1} b_{7}\right)+4\left(a_{2} b_{6}\right)+2\left(a_{3} b_{5}\right)\right) z^{7}+\left(5\left(a_{2} b_{7}\right)+3\left(a_{3} b_{6}\right)+\left(a_{4} b_{5}\right)\right) z^{8} \\
& +\left(4\left(a_{3} b_{7}\right)+2\left(a_{4} b_{6}\right)\right) z^{9}+\left(3\left(a_{4} b_{7}\right)+\left(a_{5} b_{6}\right)\right) z^{10}+2\left(a_{5} b_{7}\right) z^{11}+\left(a_{6} b_{7}\right) z^{12}=0, \\
& \left|\left(a_{0} b_{1}\right)\right|-2\left|\left(a_{0} b_{2}\right)\right| r-\left(3\left|\left(a_{0} b_{3}\right)\right|+\left|\left(a_{1} b_{2}\right)\right|\right) r^{2}-\left(4\left|\left(a_{0} b_{4}\right)\right|+2\left|\left(a_{1} b_{3}\right)\right|\right) r^{3} \tag{23}\\
& -\left(5\left|\left(a_{0} b_{5}\right)\right|+3\left|\left(a_{1} b_{4}\right)\right|+\mid\left(a_{2} b_{3}\right)\right) r^{4}-\left(6\left|\left(a_{0} b_{6}\right)\right|+4\left|\left(a_{1} b_{5}\right)\right|+2\left|\left(a_{2} b_{4}\right)\right|\right) r^{5} \\
& -\left(7\left|\left(a_{0} b_{7}\right)\right|+5\left|\left(a_{1} b_{6}\right)\right|+3\left|\left(a_{2} b_{5}\right)\right|+\left|\left(a_{3} b_{4}\right)\right|\right) r^{6} \\
& -\left(6\left|\left(a_{1} b_{7}\right)\right|+4\left|\left(a_{2} b_{6}\right)\right|+2\left|\left(a_{3} b_{5}\right)\right|\right) r^{7}+\left(5\left|\left(a_{2} b_{7}\right)\right|+3\left|\left(a_{3} b_{6}\right)\right|+\left|\left(a_{4} b_{5}\right)\right|\right) r^{8} \\
& -\left(4\left|\left(a_{3} b_{7}\right)\right|+2\left(a_{4} b_{6}\right) \mid\right) r^{9}-\left(3\left|\left(a_{4} b_{7}\right)\right|+\left|\left(a_{5} b_{6}\right)\right|\right) r^{10} \\
& -2\left|\left(a_{5}\right)\right| r^{11}-\left|\left(a_{6} b_{7}\right)\right| r^{12}=0 .
\end{align*}
$$

The formulas clearly possess a high degree of symmetry.
Formulas (22) and (23), for $a_{6}=a_{7}=b_{6}=b_{7}=0$, reduce to (20) and (21), respectively.
7. We consulted a large number of papers and, in particular, monographs [2] - [6], as well as the thorough exposition [7] and we did not find the results given here, though they are elementary. The Theorem 1 given here in Section 1 seems to be particularly interesting.

Prof. D. Mitrović and Prof. D. D. Adamović read this paper in manuscript and made valuable comments.

REFERENCES

1. M. Marden: Geometry of polynomials. Providence R. I. (USA), 1966.
2. P. Montel: Legons sur les fonctions uivalentes ou multivalentes. Paris 1933.
3. J. Dieudonné: Sur quelques propriétés des polynomes. Paris 1934.
4. J. Dieudonné: La théorie analytique des polynomes d'une variable a coefficients quelconques. Paris 1938.
5. J. A. Jenkins: Univalent functions and conformal mapping. Berlin-Göttingen-Heidelberg 1958.
6. Chr. Pommerenke: Univalent functions. Göttingen 1975.
7. Ф. Г. Авхадиев - Л. А. Аксентьев: Основные результаты в достаточных условиях однолистности аналитических функций. Успехи математических наух 30 (1975), вып. 4 (184), 3-60.

[^0]: * Received February 1, 1980. Presented by Professor I. E. Bazilevič (Moscow).

