UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. Fiz. № 634--№ 677 (1979), 208---213.

670. ON SOME LINEAR TRANSFORMATIONS OF QUASI-MONOTONE SEQUENCES*

Ivan B. Lacković and Ljubiša M. Kocić

In this paper a class of real sequences is considered which, in a special case, can be reduced to the class of nondcreasing sequences. It is proved that these classes are invariant with respect to some linear transformations.

1. Let $a = (a_n) (n = 1, 2, ...)$ be a real sequence and let the sequence $A = (A_n) (n = 1, 2, ...)$ be defined in the following way

(1)
$$A_n = \frac{p_1 a_1 + \cdots + p_n a_n}{p_1 + \cdots + p_n},$$

where the weight sequence $p = (p_n)$ is strictly positive. Let K' and K'' be two classes of real sequences. In mathematical literature the implication

$$a \in K' \Rightarrow A \in K''$$

was, very often, considered where it is of interest to determine all the weights $p = (p_n)$ for which the above implication is valid. However, we must underline here, that it is plainly to consider this implication in the case when K'' = K'. We have considered this implication, usually in the case when K' and K'' are the classes of convex sequences defined by the operators Δ^k (see, for example, our previous papers [1] and [2]). In these papers we have investigated the above implication only in the cases when K' = K''.

In the present paper we will consider also the same implication, but for this time, in the case when $K'' \neq K'$, where the classes K' and K'' will be defined by some operators, which are analogous to the operator Δ and which in a special case reduces to the same operator. Namely, we will start with the following definition.

Definition 1. Let $p \neq 0$ be a real constant. The operator L_p will be defined in the following way

(2)
$$L_p(a_n) = a_{n+1} - pa_n \qquad (n \in \mathbb{N}).$$

^{*} Presented October 10, 1979 by D. S. MITRINOVIĆ.

Clearly, this operator reduces to the operator Δ if p=1. We have limited ourself to the case $p \neq 0$, because if p=0 the above operator is not of interest with respect to the implication we have cosidered above.

In the definition which follows we will give a generalization of the concept of the monotony of real sequences.

Definition 2. For a sequence $a = (a_n)$ we shall say that it is p-monotone or that it belongs to the class K_p if the inequality

$$(3) L_p(a_n) \ge 0$$

is valid for all $n \in \mathbb{N}$.

It is quite clear that the class K_p contains a sequence $a = (a_n)$ for which we have

$$(4) L_p(a_n) = 0$$

for every $n \in \mathbb{N}$. The last equation has solution of the form

(5)
$$a_n = Cp^n$$
 $(n = 1, 2, ...),$

where C is an arbitrary real constant.

In connection with operators L_p and corresponding classes K_p we will consider in the present paper for which weights $p = (p_n)$ the implication

$$(6) a \in K_{\nu} \Rightarrow A \in K_{a}$$

holds true, where the sequence $A = (A_n)$ is defined by (1). As it will be shown in this paper of the special interest will be the case when we have $p \neq q$.

2. We will consider now the implication (6) in the form $a \in K_1 \Rightarrow A \in K_1$ i.e. when p = q = 1. In that case the classes K_p and K_q are reduced to the class of nondecreasing sequences. It can be directly verified that the identity

$$A_{n+1} - A_n = \frac{p_1(a_{n+1} - a_1) + p_2(a_{n+1} - a_2) + \dots + p_n(a_{n+1} - a_n)}{(p_1 + p_2 + \dots + p_{n+1})(p_1 + p_2 + \dots + p_n)}$$

holds true for arbitrary sequences $a = (a_n)$ and $p = (p_n)$ where the sequence $A = (A_n)$ is defined by (1). Therefrom we can easily conclude that the following statement is valid.

Lemma 1. If the sequence $a = (a_n)$ is nondecreasing then the same property has the sequence $A = (A_n)$ where the weight sequence $p = (p_n)$ is an arbitrary positive sequence.

However, the opposite statement can also be proved, i.e. we have:

Lemma 2. Let for a given sequence $a = (a_n)$ the sequence $A = (A_n)$ be defined by (1). Then if for every sequence a and arbitrary positive weights $p = (p_n)$ the implication $a \in K_p \Rightarrow A \in K_p$ holds, then we must have p = 1.

14 Publikacije Elektrotehničkog fakulteta

Proof. From (5) it follows that two sequences (p^n) and $(-p^n)$ belong to the class K_p . By the application of the implication (6) (where we have taken p=q) to those two sequences we can conclude that

$$\frac{\sum_{k=1}^{n} p_k p^k}{\sum_{k=1}^{n} p_k} = C p^n$$

where we have applied the definition (2) of the operator L_p and the corresponding relations (4) and (5). From the above equality (which holds for all $n \in \mathbb{N}$) for n=1 we obtain that C=1. From the same relation by putting C=1 and taking n=2 we get the following relation $p_1 p + p_2 p^2 = p^2 (p_1 + p_2)$ which, obviously holds, for arbitrary positive weights if and only if p=1. This proves the lemma 2.

Further on we will consider the implication (6) only for those values of p and q for which $p \neq q$. This situation is much more complicated then previous one. The necessary condition for the weight sequence $p = (p_n)$, for validity of the implication (6) for every sequence of the class K_p , is given in the following lemma.

Lemma 3. Suppose that the sequence $A = (A_n)$, for a real sequence $a = (a_n)$, is given by (1). If the implication (6) is valid for every sequence $a = (a_n)$ then the weight sequence $p = (p_n)$ must be of the form

(7)
$$p_n = p_1 \frac{q^{n-1} - q^{n-2}}{p^{n-1} - q^{n-2}} \prod_{k=1}^{n-1} \frac{p^k - q^{k-1}}{p^k - q^k} \qquad (n = 2, 3, \ldots),$$

where the weight p_1 is arbitrary given positive number.

Proof. As we have said above the sequences (p^n) and $(-p^n)$ are in the class K_p . Since the implication (6) is valid for an arbitrary sequence from the class K_p , from this implication we have

(8)
$$L_{q}\left(\frac{\sum_{k=1}^{n} p_{k} p^{k}}{\sum_{k=1}^{n} p_{k}}\right) = 0 \qquad (n = 1, 2, \ldots).$$

Using the fact that equation (4) has solution (5), from (8) it follows that

(9)
$$\frac{\sum_{k=1}^{n} p_k p^k}{\sum_{k=1}^{n} p_k} = Cq^n \qquad (n = 1, 2, \ldots).$$

By putting n=1 in (9) we find C=p/q (we have supposed that $p\neq 0$ and $q\neq 0$). Therefrom and from (9) we obtain the following relation

(10)
$$\sum_{k=1}^{n} p_{k} p^{k} = \frac{p}{q} \left(\sum_{k=1}^{n} p_{k} \right) q^{n}.$$

By subtracting the relations (10) for n+1 and n we find

(11)
$$p_{n+1}p^{n+1} = \frac{p}{q} \left(q^{n+1} \sum_{k=1}^{n+1} p_k - q^n \sum_{k=1}^n p_k \right).$$

Denote

(12)
$$B_n = \sum_{k=1}^n p_k$$
 $(n = 1, 2, ...).$

By using (12) the relation (11) can be written in the following form

(13)
$$\frac{B_{n+1}}{B_n} = \frac{p^n - q^{n-1}}{p^n - q^n} = Q_n \qquad (n = 1, 2, \ldots).$$

By suitable multiplication of relations (13) for sequential values of *n* we have $B_n = B_1 \prod_{k=1}^{n-1} Q_k$, which leads us to

(14)
$$p_n = B_n - B_{n-1} = B_1 (Q_{n-1} - 1) \prod_{k=1}^{n-2} Q_k.$$

Using again the relations (12), (13) and (14) the above lemma 3 follows.

Lemma 4. Suppose that real numbers p and q satisfy one of the following conditions

$$(15) p>q>1,$$

(16)
$$0 ,$$

(17)
$$p < q < 0.$$

Then the weight sequence $p = (p_n)$ given by (7), where p_1 is arbitrary positive constant, is strictly positive.

Proof. The weight sequence, given by (7) is the product of the terms of the following form

$$\frac{q^{n-1}-q^{n-2}}{p^{n-1}-q^{n-2}} = \left(\frac{q}{p}\right)^{n-1} \frac{1-\frac{1}{q}}{1-\frac{1}{p}\left(\frac{q}{p}\right)^{n-2}}, \qquad \frac{p^{k}-q^{k-1}}{p^{k}-q^{k}} = \frac{1-\frac{1}{p}\left(\frac{q}{p}\right)^{k-1}}{1-\left(\frac{q}{p}\right)^{k}}.$$

Since these terms are positive if one of the conditions (15), (16) or (17) is satisfied the proof of lemma 4 is finished.

The following lemma contains the sufficient conditions for the validity of the implication (6) in the case when $p \neq q$. In other words the following statement is valid.

Lemma 5. Let us suppose that real numbers p and q satisfy the conditions of lemma 4. If the weight sequence $p = (p_n)$ is of the form (7), where p_1 is an arbitrary positive number, then the implication (6) is valid for an arbitrary sequence $a = (a_n)$ from the class K_p , where the sequence $A = (A_n)$ is defined by (1).

Proof. We will determine the coefficients m_k (k = 1, ..., n) such that the identity

(18)
$$L_q(A_n) = \sum_{k=1}^n m_k L_p(a_k)$$

holds true for an arbitrary $n \in \mathbb{N}$ and arbitrary sequence $a = (a_n)$. We have

(19)
$$\sum_{k=1}^{n} m_k L_p(a_k) = -pm_1 a_1 + \sum_{k=2}^{n} (m_{k-1} - pm_k) a_k + m_n a_{n+1}.$$

At the same time we have

(20)
$$L_q(A_n) = \sum_{k=1}^n \left(\frac{p_k}{B_{n+1}} - q\frac{p_k}{B_n}\right) a_k + \frac{p_{n+1}}{B_{n+1}} a_{n+1}.$$

From (19) and (20) we find that

(21)
$$-pm_1 = p_1 L_q \left(\frac{1}{B_n}\right), \quad m_{k-1} - pm_k = p_k L_q \left(\frac{1}{B_n}\right) \quad (k = 2, \ldots, n), \quad m_n = \frac{p_{n+1}}{B_{n+1}}.$$

The system of conditions (21) implies that the coefficients $m_k (k = 1, ..., n)$ must be of the form

(22)
$$m_k = -\frac{S_n}{p^{k+1}} \sum_{j=1}^k p_j p^j \qquad (k = 1, \ldots, n),$$

where we have introduced the sequence (S_n) by

(23)
$$S_n = \frac{1}{B_{n+1}} - \frac{q}{B_n}.$$

The equality (10) in virtue of (12) can be writen in the following form

(24)
$$\sum_{j=1}^{k} p_{j} p^{j} = \frac{p}{q} q^{k} B_{k}.$$

On the basis of (22), (23) and (24) we find that

(25)
$$m_k = \frac{B_k}{B_n B_{n+1}} \frac{q^{k-1}}{p^k q^n} (q^{n+1} B_{n+1} - q^n B_n).$$

The relations (11) and (25) imply that the coefficients m_k are of the following form

(26)
$$m_k = \frac{B_k}{B_n B_{n+1}} \left(\frac{p}{q}\right)^{n-k} p_{n+1} \qquad (k = 1, \ldots, n).$$

Since the conditions (15), (16) and (17) are satisfied for p and q, from lemma 4 we have that $p_j > 0$, i.e. from (26) it follows that $m_k \ge 0$ (k = 1, ..., n). Since we have proved that the coefficients m_k are nonnegative the relation (18) proves that if the sequence $a = (a_n)$ is in the class K_p , then the sequence $A = (A_m)$ is in the class K_q . This completes the proof of lemma 5.

Previous lemmas 1-5 can be combined in the following theorem.

Theorem. Let for a given sequence $a = (a_n)$ the sequence $A = (A_n)$ be dedined by (1).

(i) If we have p = q then the implication (6) holds true for every sequence of the class K_p and for arbitrary positive weights $p = (p_n)$ if and only if p = q = 1.

(ii) If p and satisfy one of the conditions (15), (16) or (17) then the implication (6) holds true for an arbitrary sequence of the class K_p if and only if the sequence $p = (p_n)$ of positive weights is given by (7) for n = 2, 3, ... where p_1 is an arbitrary positive number.

REFERENCES

- 1. P. M. VASIĆ, J. D. KEČKIĆ, I. B. LACKOVIĆ, Ž. M. MITROVIĆ: Some properties of arithmetic means of real sequences. Mat. Vesnik 9 (24) (1972), 205-212.
- I. B. LACKOVIĆ, S. K. SIMIĆ: On weighted arithmetic means which are invariant with respect to the k-th order convexity. These Publications № 461 — № 497 (1974), 156-159.