670. 

# ON SOME LINEAR TRANSFORMATIONS OF QUASI-MONOTONE SEQUENCES* 

Ivan B. Lacković and Ljubiša M. Kocić

> In this paper a class of real sequences is considered which, in a special case, can be reduced to the class of nondcreasing sequences. It is proved that these classes are invariant with respect to some linear transformations.

1. Let $a=\left(a_{n}\right)(n=1,2, \ldots)$ be a real sequence and let the sequence $A=\left(A_{n}\right)(n=1,2, \ldots)$ be defined in the following way

$$
\begin{equation*}
A_{n}=\frac{p_{1} a_{1}+\cdots+p_{n} a_{n}}{p_{1}+\cdots+p_{n}}, \tag{1}
\end{equation*}
$$

where the weight sequence $p=\left(p_{n}\right)$ is strictly positive. Let $K^{\prime}$ and $K^{\prime \prime}$ be two classes of real sequences. In mathematical literature the implication

$$
a \in K^{\prime} \Rightarrow A \in K^{\prime \prime}
$$

was, very often, considered where it is of interest to determine all the weights $p=\left(p_{n}\right)$ for which the above implication is valid. However, we must underline here, that it is plainly to consider this implication in the case when $K^{\prime \prime}=K^{\prime}$. We have considered this implication, usually in the case when $K^{\prime}$ and $K^{\prime \prime}$ are the classes of convex sequences defined by the operators $\Delta^{k}$ (see, for example, our previous papers [1] and [2]). In these papers we have investigated the above implication only in the cases when $K^{\prime}=K^{\prime \prime}$.

In the present paper we will consider also the same implication, but for this time, in the case when $K^{\prime \prime} \neq K^{\prime}$, where the classes $K^{\prime}$ and $K^{\prime \prime}$ will be defined by some operators, which are analogous to the operator $\Delta$ and which in a special case reduces to the same operator. Namely, we will start with the following definition.

Definition 1. Let $p \neq 0$ be a real constant. The operator $L_{p}$ will be defined in the following way

$$
\begin{equation*}
L_{p}\left(a_{n}\right)=a_{n+1}-p a_{n} \quad(n \in \mathbf{N}) \tag{2}
\end{equation*}
$$

[^0]Clearly, this operator reduces to the operator $\Delta$ if $p=1$. We have limited ourself to the case $p \neq 0$, because if $p=0$ the above operator is not of interest with respect to the implication we have cosidered above.

In the definition which follows we will give a generalization of the concept of the monotony of real sequences.

Definition 2. For a sequence $a=\left(a_{n}\right)$ we shall say that it is p-monotone or that it belongs to the class $K_{p}$ if the inequality

$$
\begin{equation*}
L_{p}\left(a_{n}\right) \geqq 0 \tag{3}
\end{equation*}
$$

is valid for all $n \in \mathbf{N}$.
It is quite clear that the class $K_{p}$ contains a sequence $a=\left(a_{n}\right)$ for which we have

$$
\begin{equation*}
L_{p}\left(a_{n}\right)=0 \tag{4}
\end{equation*}
$$

for every $n \in \mathbf{N}$. The last equation has solution of the form

$$
\begin{equation*}
a_{n}=C p^{n} \quad(n=1,2, \ldots), \tag{5}
\end{equation*}
$$

where $C$ is an arbitrary real constant.
In connection with operators $L_{p}$ and corresponding classes $K_{p}$ we will consider in the present paper for which weights $p=\left(p_{n}\right)$ the implication

$$
\begin{equation*}
a \in K_{p} \Rightarrow A \in K_{q} \tag{6}
\end{equation*}
$$

holds true, where the sequence $A=\left(A_{n}\right)$ is defined by (1). As it will be shown in this paper of the special interest will be the case when we have $p \neq q$.
2. We will consider now the implication (6) in the form $a \in K_{1} \Rightarrow A \in K_{1}$ i.e. when $p=q=1$. In that case the classes $K_{p}$ and $K_{q}$ are reduced to the class of nondecreasing sequences. It can be directly verified that the identity

$$
A_{n+1}-A_{n}=\frac{p_{1}\left(a_{n+1}-a_{1}\right)+p_{2}\left(a_{n+1}-a_{2}\right)+\cdots+p_{n}\left(a_{n+1}-a_{n}\right)}{\left(p_{1}+p_{2}+\cdots+p_{n+1}\right)\left(p_{1}+p_{2}+\cdots+p_{n}\right)}
$$

holds true for arbitrary sequences $a=\left(a_{n}\right)$ and $p=\left(p_{n}\right)$ where the sequence $A=\left(A_{n}\right)$ is defined by (1). Therefrom we can easily conclude that the following statement is valid.

Lemma 1. If the sequence $a=\left(a_{n}\right)$ is nondecreasing then the same property has the sequence $A=\left(A_{n}\right)$ where the weight sequence $p=\left(p_{n}\right)$ is an arbitrary positive sequence.

However, the opposite statement can also be proved, i.e. we have:
Lemma 2. Let for a given sequence $a=\left(a_{n}\right)$ the sequence $A=\left(A_{n}\right)$ be defined by (1). Then if for every sequence $a$ and arbitrary positive weights $p=\left(p_{n}\right)$ the implication $a \in K_{p} \Rightarrow A \in K_{p}$ holds, then we must have $p=1$.

Proof. From (5) it follows that two sequences ( $p^{n}$ ) and ( $-p^{n}$ ) belong to the class $K_{p}$. By the application of the implication (6) (where we have taken $p=q$ ) to those two sequences we can conclude that

$$
\frac{\sum_{k=1}^{n} p_{k} p^{k}}{\sum_{k=1}^{n} p_{k}}=C p^{n}
$$

where we have applied the definition (2) of the operator $L_{p}$ and the corresponding relations (4) and (5). From the above equality (which holds for all $n \in \mathbf{N}$ ) for $n=1$ we obtain that $C=1$. From the same relation by putting $C=1$ and taking $n=2$ we get the following relation $p_{1} p+p_{2} p^{2}=p^{2}\left(p_{1}+p_{2}\right)$ which, obviously holds, for arbitrary positive weights if and only if $p=1$. This proves the lemma 2.

Further on we will consider the implication (6) only for those values of $p$ and $q$ for which $p \neq q$. This situation is much more complicated then previous one. The necessary condition for the weight sequence $p=\left(p_{n}\right)$, for validity of the implication (6) for every sequence of the class $K_{p}$, is given in the following lemma.

Lemma 3. Suppose that the sequence $A=\left(A_{n}\right)$, for a real sequence $a=\left(a_{n}\right)$, is given by (1). If the implication (6) is valid for every sequence $a=\left(a_{n}\right)$ then the weight sequence $p=\left(p_{n}\right)$ must be of the form

$$
\begin{equation*}
p_{n}=p_{1} \frac{q^{n-1}-q^{n-2}}{p^{n-1}-q^{n-2}} \prod_{k=1}^{n-1} \frac{p^{k}-q^{k-1}}{p^{k}-q^{k}} \quad(n=2,3, \ldots), \tag{7}
\end{equation*}
$$

where the weight $p_{1}$ is arbitrary given positive number.
Proof. As we have said above the sequences $\left(p^{n}\right)$ and ( $-p^{n}$ ) are in the class $K_{p}$. Since the implication (6) is valid for an arbitrary sequence from the class $K_{p}$, from this implication we have

$$
\begin{equation*}
L_{q}\left(\frac{\sum_{k=1}^{n} p_{k} p^{k}}{\sum_{k=1}^{n} p_{k}}\right)=0 \quad(n=1,2, \ldots) \tag{8}
\end{equation*}
$$

Using the fact that equation (4) has solution (5), from (8) it follows that

$$
\begin{equation*}
\frac{\sum_{k=1}^{n} p_{k} p^{k}}{\sum_{k=1}^{n} p_{k}}=C q^{n} \quad(n=1,2, \ldots) \tag{9}
\end{equation*}
$$

By putting $n=1$ in (9) we find $C=p / q$ (we have supposed that $p \neq 0$ and $q \neq 0$ ). Therefrom and from (9) we obtain the following relation

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k} p^{k}=\frac{p}{q}\left(\sum_{k=1}^{n} p_{k}\right) q^{n} \tag{10}
\end{equation*}
$$

By subtracting the relations (10) for $n+1$ and $n$ we find

$$
\begin{equation*}
p_{n+1} p^{n+1}=\frac{p}{q}\left(q^{n+1} \sum_{k=1}^{n+1} p_{k}-q^{n} \sum_{k=1}^{n} p_{k}\right) . \tag{11}
\end{equation*}
$$

Denote

$$
\begin{equation*}
B_{n}=\sum_{k=1}^{n} p_{k} \quad(n=1,2, \ldots) \tag{12}
\end{equation*}
$$

By using (12) the relation (11) can be written in the following form

$$
\begin{equation*}
\frac{B_{n+1}}{B_{n}}=\frac{p^{n}-q^{n-1}}{p^{n}-q^{n}}=Q_{n} \quad(n=1,2, \ldots) . \tag{13}
\end{equation*}
$$

By suitable multiplication of relations (13) for sequential values of $n$ we have $B_{n}=B_{1} \prod_{k=1}^{n-1} Q_{k}$, which leads us to

$$
\begin{equation*}
p_{n}=B_{n}-B_{n-1}=B_{1}\left(Q_{n-1}-1\right) \prod_{k=1}^{n-2} Q_{k} \tag{14}
\end{equation*}
$$

Using again the relations (12), (13) and (14) the above lemma 3 follows.
Lemma 4. Suppose that real numbers $p$ and $q$ satisfy one of the following conditions

$$
\begin{gather*}
p>q>1,  \tag{15}\\
0<p<q<1,  \tag{16}\\
p<q<0 . \tag{17}
\end{gather*}
$$

Then the weight sequence $p=\left(p_{n}\right)$ given by (7), where $p_{1}$ is arbitrary positive constant, is strictly positive.

Proof. The weight sequence, given by (7) is the product of the terms of the following form

$$
\frac{q^{n-1}-q^{n-2}}{p^{n-1}-q^{n-2}}=\left(\frac{q}{p}\right)^{n-1} \frac{1-\frac{1}{q}}{1-\frac{1}{p}\left(\frac{q}{p}\right)^{n-2}}, \quad \frac{p^{k}-q^{k-1}}{p^{k}-q^{k}}=\frac{1-\frac{1}{p}\left(\frac{q}{p}\right)^{k-1}}{1-\left(\frac{q}{p}\right)^{k}} .
$$

Since these terms are positive if one of the conditions (15), (16) or (17) is satisfied the proof of lemma 4 is finished.

The following lemma contains the sufficient conditions for the validity of the implication (6) in the case when $p \neq q$. In other words the following statement is valid.

Lemma 5. Let us suppose that real numbers $p$ and $q$ satisfy the conditions of lemma 4. If the weight sequence $p=\left(p_{n}\right)$ is of the form (7), where $p_{1}$ is an arbitrary positive number, then the implication (6) is valid for an arbitrary sequence $a=\left(a_{n}\right)$ from the class $K_{p}$, where the sequence $A=\left(A_{n}\right)$ is defined by (1).

Proof. We will determine the coefficients $m_{k}(k=1, \ldots, n)$ such that the identity

$$
\begin{equation*}
L_{q}\left(A_{n}\right)=\sum_{k=1}^{n} m_{k} L_{p}\left(a_{k}\right) \tag{18}
\end{equation*}
$$

holds true for an arbitrary $n \in \mathbf{N}$ and arbitrary sequence $a=\left(a_{n}\right)$. We have

$$
\begin{equation*}
\sum_{k=1}^{n} m_{k} L_{p}\left(a_{k}\right)=-p m_{1} a_{1}+\sum_{k=2}^{n}\left(m_{k-1}-p m_{k}\right) a_{k}+m_{n} a_{n+1} . \tag{19}
\end{equation*}
$$

At the same time we have

$$
\begin{equation*}
L_{q}\left(A_{n}\right)=\sum_{k=1}^{n}\left(\frac{p_{k}}{B_{n+1}}-q \frac{p_{k}}{B_{n}}\right) a_{k}+\frac{p_{n+1}}{B_{n+1}} a_{n+1} . \tag{20}
\end{equation*}
$$

From (19) and (20) we find that

$$
\begin{equation*}
-p m_{1}=p_{1} L_{q}\left(\frac{1}{B_{n}}\right), \quad m_{k-1}-p m_{k}=p_{k} L_{q}\left(\frac{1}{B_{n}}\right)(k=2, \ldots, n), \quad m_{n}=\frac{p_{n+1}}{B_{n+1}} \tag{21}
\end{equation*}
$$

The system of conditions (21) implies that the coefficients $m_{k}(k=1, \ldots, n)$ must be of the form

$$
\begin{equation*}
m_{k}=-\frac{S_{n}}{p^{k+1}} \sum_{j=1}^{k} p_{j} p^{j} \quad(k=1, \ldots, n) \tag{22}
\end{equation*}
$$

where we have introduced the sequence $\left(S_{n}\right)$ by

$$
\begin{equation*}
S_{n}=\frac{1}{B_{n+1}}-\frac{q}{B_{n}} . \tag{23}
\end{equation*}
$$

The equality (10) in virtue of (12) can be writen in the following form

$$
\begin{equation*}
\sum_{j=1}^{k} p_{j} p^{j}=\frac{p}{q} q^{k} B_{k} . \tag{24}
\end{equation*}
$$

On the basis of (22), (23) and (24) we find that

$$
\begin{equation*}
m_{k}=\frac{B_{k}}{B_{n} B_{n+1}} \frac{q^{k-1}}{p^{k} q^{n}}\left(q^{n+1} B_{n+1}-q^{n} B_{n}\right) . \tag{25}
\end{equation*}
$$

The relations (11) and (25) imply that the coefficients $m_{k}$ are of the following form

$$
\begin{equation*}
m_{k}=\frac{B_{k}}{B_{n} B_{n+1}}\left(\frac{p}{q}\right)^{n-k} p_{n+1} \quad(k=1, \ldots, n) \tag{26}
\end{equation*}
$$

Since the conditions (15), (16) and (17) are satisfied for $p$ and $q$, from lemma 4 we have that $p_{j}>0$, i.e. from (26) it follows that $m_{k} \geqq 0(k=1, \ldots, n)$. Since we have proved that the coefficients $m_{k}$ are nonnegative the relation (18) proves that if the sequence $a=\left(a_{n}\right)$ is in the class $K_{p}$, then the sequence $A=\left(A_{m}\right)$ is in the class $K_{q}$. This completes the proof of lemma 5.

Previous lemmas $1-5$ can be combined in the following theorem.

Theorem. Let for a given sequence $a=\left(a_{n}\right)$ the sequence $A=\left(A_{n}\right)$ be dedined by (1).
(i) If we have $p=q$ then the implication (6) holds true for every sequence of the class $K_{p}$ and for arbitrary positive weights $p=\left(p_{n}\right)$ if and only if $p=q=1$.
(ii) If $p$ and satisfy one of the conditions (15), (16) or (17) then the implication (6) holds true for an arbitrary sequence of the class $K_{p}$ if and only if the sequence $p=\left(p_{n}\right)$ of positive weights is given by (7) for $n=2,3, \ldots$ where $p_{1}$ is an arbitrary positive number.

## REFERENCES

1. P. M. Vasić, J. D. Kečkić, I. B. Lacković, Z̆. M. Mitrović: Some properties of arithmetic means of real sequences. Mat. Vesnik 9 (24) (1972), $205-212$.
2. I. B. Lacković, S. K. Simić: On weighted arithmetic means whish are invariant with respect to the $k$-th order convexity. These Publications № 461 - № 497 (1974), 156-159.

[^0]:    * Presented October 10, 1979 by D. S. Mitrinović.

