UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. Fiz. № 634 — № 677 (1979), 203—207.

ON A LINEAR DIFFERENCE OPERATOR*

This paper contains the proof that for the operator L defined by (2) the implication (4) holds for every sequence $x = (x_n)$ if and only if $L = \Delta^2$.

0. Let us denote by $x = (x_n)$ a sequence of real numbers, and let K be the class of real sequences convex of order n (n = 0, 1, 2, ...). Let, further, A be a given operator whose domian contains the class K and whose images are real sequences. It is interesting to consider for which classes K and operators A the implication

(1)
$$x \in K \Rightarrow A(x) \ge 0$$

holds true.

669.

In today's literature there is a number of articles discussing the above question. Thus N. OZEKI [1] has proved the following theorem, which is in connection with the above implication (1).

Theorem 1. For every real sequence $a = (a_n)$ convex of order 2, the sequence $A = (A_n)$, where A_n is defined by

$$A_n = \frac{a_1 + \cdots + a_n}{n},$$

is also convex of the same order.

P. M. VASIĆ, J. D. KEČKIĆ, I. B. LACKOVIĆ and Ž. M. MITROVIĆ had considered in paper [2] the same implication in the case when A is the second order difference of weighted arithmetic means and K is the class of all real sequences convex of order 2. In the same paper they obtained all the weights $p = (p_n)$ for which the implication (1) holds where A and K are defined as above.

Further generalizations of these results, for the sequences convex of order n(n=3, 4, ...) and weighted arithmetic means, had been considered by I. B. LACKOVIĆ and S. K. SIMIĆ [3].

1. Denote by L the linear difference operator

(2)

 $L a_n = a_{n+2} + p a_{n+1} + q a_n, \qquad (n = 1, 2, 3, \ldots)$

* Presented October 10, 1979 by D. S. MITRINOVIĆ.

where $a = (a_n)$ is a given real sequence, p, q are given real numbers, and $q \neq 0$. Define, now, the sequence $\bar{x} = (\bar{x}_n)$ by

(3)
$$\bar{x}_n = \frac{1}{n} \sum_{k=1}^n x_k.$$

Then, we shall consider for which p and q the implication

$$(4) Lx_n \ge 0 \Rightarrow L\bar{x}_n \ge 0$$

holds, for every sequence $x = (x_n)$ and every $n \in \mathbb{N}$.

The difference equation

$$Lx_n = 0,$$

independently of choice of p and q, has the solution of the form

(6)
$$x_n = C_1 \alpha_n + C_2 \beta_n,$$

where C_1 and C_2 are arbitrary real constants.

In the following lemma, we shall give a necessary condition for the operator L so that the implication (4) holds true.

Lemma 1. If for the operator L and every $x = (x_n)$ and every $n \in \mathbb{N}$ the implication (4) holds, then

$$L\,\bar{\alpha}_n=0,$$

and

$$(8) L\beta_n = 0$$

for every $n \in \mathbb{N}$, where $\bar{\alpha}$ and β are defined with

(9)
$$\bar{\alpha}_n = \frac{1}{n} \sum_{k=1}^n \alpha_k, \quad \overline{\beta}_n = \frac{1}{n} \sum_{k=1}^n \beta_k.$$

Proof. Consider the sequence $x = (x_n)$ defined by (6). This sequence satisfies (5), i.e. $Lx_n \ge 0$ for every $n \in \mathbb{N}$. Then we have $L\tilde{x}_n \ge 0$ from the implication (4), where

(10)
$$\bar{x}_n = C_1 \bar{\alpha}_n + C_2 \beta_n,$$

 C_1 , C_2 are arbitrary constants and the sequences $\overline{\alpha}$ and $\overline{\beta}$ are given by (9). Taking $C_1 = +1$ and $C_2 = 0$ in (10), we have $L \overline{\alpha}_n \ge 0$, but for $C_1 = -1$, $C_2 = 0$ we have $-L \overline{\alpha}_n \ge 0$, wherefrom we conclude that condition (7) for every $n \in \mathbb{N}$ must be fulfilled. In the similar way, by choosing $C_1 = 0$ and $C_2 = \pm 1$, we derive (8). This completes the proof.

On the basis of lemma 1 we can make the next conclusion. If the implication (4) holds for the operator L and every sequence $x = (x_n)$, then the relations (7) and (8) follow, and next conditions must be fulfilled also

(11)
$$\bar{\alpha}_3 + p \,\bar{\alpha}_2 + q \,\bar{\alpha}_1 = 0,$$

(12)
$$\overline{\beta}_3 + p \,\overline{\beta}_2 + q \,\overline{\beta}_1 = 0.$$

Characteristic equation of equation (5), according to (2), is

(13)
$$t^2 + pt + q = 0$$

We distinguish next three cases:

A) Let $p^2 - 4q > 0$. Then (13) has the form $t^2 - (t_1 + t_2)t + t_1 t_2 = 0$, where t_1 , t_2 are real numbers such that $t_1 \cdot t_2 \neq 0$ and $t_1 \neq t_2$. We have $\alpha_n = t_1^n$, $\beta_n = t_2^n$ and

$$\bar{\alpha}_n = \frac{1}{n} \sum_{k=1}^n t_1^k, \quad \bar{\beta}_n = \frac{1}{n} \sum_{k=1}^n t_2^k.$$

Now (11) and (12) have the forms

(14)
$$\frac{t_1 + t_1^2 + t_1^3}{3} - (t_1 + t_2)\frac{t_1 + t_1^2}{2} + t_1 t_2 \cdot t_1 = 0,$$

(15)
$$\frac{t_2 + t_2^2 + t_2^3}{3} - (t_1 + t_2) \frac{t_2 + t_2^2}{2} + t_1 t_2 \cdot t_2 = 0,$$

and using the condition $q \neq 0$, i.e. $t_1 t_2 \neq 0$ we have

(16)
$$2-t_1-t_1^2+3t_1t_2-3t_2=0,$$

(17)
$$2-t_2-t_2^2+3t_1t_2-3t_1=0.$$

Subtracting the last two equations we derive $(t_2 - t_1)(t_1 + t_2 - 2) = 0$.

As $t_1 \neq t_2$ it must be $t_2 = 2 - t_1$. Then, on the basis of (16) we have $(t_1 - 1)^2 = 0$, therefrom it follows $t_1 = t_2$.

The result we just derived, can be formulated in following way:

Lemma 2. Let L be defined by (2) where $q \neq 0$ and $p^2 - 4q > 0$. Then the implication (4) cannot be true for every $x = (x_n)$ and for every $n \in \mathbb{N}$.

B) Now, $p^2 - 4q = 0$. Then (13) may be written as $(t - t_0)^2 = 0$ where $t_0 \in \mathbf{R}$ and $t_0 \neq 0$. Now we have $\alpha_n = t_0^n$, $\beta_n = nt_0^n$ i.e.

$$\bar{\alpha}_n = \frac{1}{n} \sum_{k=1}^n t_0^k; \ \bar{\beta}_n = \frac{1}{n} \sum_{k=1}^n k t_0^k.$$

Equalities (11) and (12) have the forms

(18)
$$\frac{t_0 + t_0^2 + t_0^3}{3} - 2t_0 \frac{t_0 + t_0^2}{2} + t_0^2 t_0 = 0,$$

(19)
$$\frac{t_0 + 2t_0^2 + 3t_0^3}{3} - 2t_0 \frac{t_0 + 2t_0^2}{2} + t_0^2 t_0 = 0.$$

(18) and (19) get the forms

- (20) $(1-t_0)^2 = 0,$
- (21) $1 t_0 = 0$

after evident transformations. In this way we obtain the next result:

Lemma 3. Let L be defined by (2) where $q \neq 0$ and $p^2 - 4q = 0$. Then, if the implication (4) holds for every $x = (x_n)$ and every $n \in \mathbb{N}$, it must be p = -2 and q = 1.

C) $p^2 - 4q < 0$. Then (13) has a solution $t_{1,2} = \rho (\cos \omega \pm i \sin \omega)$ i.e. (13) gets the form

$$(t-\rho e^{i\omega}) (t-\rho e^{-i\omega}) = t^2 - 2t \rho \cos \omega + \rho^2,$$

wherefrom it follows $p = -2\rho \cos \omega$, $q = \rho^2$. Now we have

 $\alpha_n = \rho^n \cos n \omega, \ \beta_n = \rho^n \sin n \omega,$

i.e.

$$\bar{\alpha}_n = \frac{1}{n} \sum_{k=1}^n \rho^k \cos k \, \omega; \quad \bar{\beta}_n = \frac{1}{n} \sum_{k=1}^n \rho^k \sin k \, \omega.$$

In this manner (11) and (12) have the form

(22)
$$\frac{\rho\cos\omega+\rho^2\cos 2\omega+\rho^3\cos 3\omega}{3}-2\rho\cos\omega\frac{\rho\cos\omega+\rho^2\cos 2\omega}{2}+\rho^2\rho\cos\omega=0,$$

(23)
$$\frac{\rho \sin \omega + \rho^2 \sin 2 \omega + \rho^3 \sin 3 \omega}{3} - 2 \rho \cos \omega \frac{\rho \sin \omega + \rho^2 \sin 2 \omega}{2} + \rho^2 \rho \sin \omega = 0.$$

From the relations (22) and (23) we obtain

(24)
$$\frac{1}{3}(z+z^2+z^3)-\frac{1}{2}(z+\bar{z})(z+z^2)+z\bar{z}z=0,$$

where we introduced the substitution $z = \rho e^{i\omega}$.

On the basis of the asymption $q \neq 0$ we have $\rho \neq 0$, i.e. $z \neq 0$ so (24) becomes

(25)
$$2(1+z+z^2)-3(1+z)(z+\bar{z})+6z\bar{z}=0.$$

This equation can be writen in the form

(26)
$$2(1+\bar{z}+\bar{z}^2)-3(1+\bar{z})(z+\bar{z})+6z\bar{z}=0.$$

Substracting (25) from (26) we have $2(z-\bar{z})+2(z^2-\bar{z}^2)-3(z+\bar{z})(z-\bar{z})=0$, i.e.

(27)
$$(z-\bar{z})(2-z-\bar{z})=0.$$

Solutions of (27) are

- $(28) z = \vec{z}_{y}$

It is clear that the condition (28) cannot be fulfilled because of $p^2 - 4q < 0$. Substituting (29) into (25), we have

$$(30) -4(z-1)^2 = 0$$

which cannot be fulfilled too.

In this manner the following lemma has been proved.

Lemma 4. Let the operator L be defined by (2), where $q \neq 0$ and $p^2 - 4q < 0$. Then the inplication (4) cannot be valid for every sequence $x = (x_n)$ and every $n \in \mathbb{N}$.

On the basis of the proved lemmas and theorem 1 we have:

Theorem 2. Let the operator L have the form defined by (2), where $p, q \in \mathbf{R}$, $q \neq 0$. Then the implication (4) holds for every sequence $x = (x_n)$ if and only if p = -2, q = 1, i.e. if and only if $L \equiv \Delta^2$.

REFERENCES

- N OZEKI: On some inequalites (Japanese). J. College Arts sci. Chiba Univ 4 (1965) № 3, 211-214.
- 2. P. M. VASIĆ, J. D. KEČKIĆ, I. B. LACKOVIĆ, Ž. M. MITROVIĆ: Some properties of arithmetic means of real sequences. Mat. Vesnik 9 (24) (1972), 205-212.
- 3. I. B. LACKOVIĆ, S. K. SIMIĆ: On weighted arithmetic means which are invariant with respect to k-th order convexity, These Publications № 461 № 479 (1974), 159-166.