UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. Fiz. № 634 — № 677 (1979), 197—202.

668. INTERPOLATION IN THE $L^{p,\lambda}$ -SPACES AND ELLIPTIC DIFFERENTIAL EQUATIONS*

Magdalena Jaroszewska

- 1. In this paper we prove the interpolation theorem for a special case of spaces $L^{p,\lambda}$ with mixed norms. Then taking advantage of some properties of $L^{p,\lambda}$ -spaces and the above theorem, proven heretofore, their application to the theory of partial differential equations of elliptic type is demonstrated. Results are of a similar type as those published before in [3] and [4]. Feasibility of such studies has been discussed in [7] 4.11.
- **2.** The index $i=1, \ldots, n$, unless otherwise stated. Let **R** be the set of real numbers, k_i positive integer, $\sum_{i=1}^n k_i = N$, $1 \le p_i$, r_i , s_i , $q_i \le \infty$, $\lambda_i \ge 0$. In the following we shall apply vector notations, i.e. $p = (p_1, \ldots, p_n)$, $x = (x_1, \ldots, x_n)$

following we shall apply vector notations, i.e. $p = (p_1, \ldots, p_n)$, $x = (x_1, \ldots, x_n)$ etc. Let $Q_i^0(x_i^0, r_i) \subset \mathbb{R}^{k_i}$ be the fixed, bounded cube with centre at x_i^0 and edge length equal to r_i , the edges of which are parallel to coordinate axes. We shall denote by Q_i the subcube of Q_i^0 and homothetic with Q_i^0 . Let Ω_i denote an open bounded subset of \mathbb{R}^{k_i} . Assume $\Omega_i(x_i^0, r_i) = \Omega_i \cap Q_i^0(x_i^0, r_i)$,

$$Q^{0} = P_{i=1}^{n} Q_{i}^{0}, \ Q = P_{i=1}^{n} Q_{i}, \ \Omega = P_{i=1}^{n} \Omega_{i}, \ \overline{\Omega} = P_{i=1}^{n} \overline{\Omega}_{i}, \ \Omega(x^{0}, r) = P_{i=1}^{n} \Omega_{i}(x_{i}^{0}, r_{i}).$$

The measure means always Lebesque measure. To simplify the notation, we shall write, for example:

$$\int_{\Omega} u(x) dx = \int_{\Omega} \cdots \int_{\Omega_1} u(x) dx_1 \cdots dx_n,$$

$$\int_{\Omega} |u(x)|^p dx = ||u||_{L^p(\Omega)}^{p_n} = \int_{\Omega} \left[\cdots \int_{\Omega_2} \left(\int_{\Omega_1} |u(x)|^{p_1} dx_1 \right)^{p_2/p_1} dx_2 \cdots \right]^{p_n/p_{n-1}} dx_n.$$

Definition 1. We shall denote by $L^{p,\lambda}(\Omega)$ the linear space of functions u locally integrable in Ω for which there exists a positive constant M depending on u such that for every x^0 , r with $x_i^0 \in \Omega_i$, $r_i > 0$ there holds the inequality

$$\left\{\int_{\Omega(x_0,r)} \left| u(x) - u_{\Omega(x^0,r)} \right|^p dx \right\}^{1/p_n} \leq M \prod_{i=1}^n r_i^{\lambda_i p_n/p_i}$$

^{*} Presented October 10, 1979 by D. S. MITRINOVIĆ.

where

$$u_{\Omega(x^0, r)} = \left\{ P_{i=1}^n \mu \left[\Omega_i(x_i^0, r_i) \right] \right\}^{-1} \int_{\Omega(x^0, r)} u(x) dx$$

is the mean value of u on $\Omega(x^0, r)$.

The expression

$$\left\| \left\| u \right\| \right\|_{L^{p,\lambda}(\Omega)} \left\{ \sup_{\substack{x_{i}^{0} \in \Omega_{i} \\ r_{i} > 0}} \prod_{i=1}^{n} r_{i}^{-\lambda_{i} p_{n}/p_{i}} \int_{b^{\Omega}(x^{0}, r)} \left| u(x) - u_{\Omega(x^{0}, r)} \right|^{p} dx \right\}^{1/p_{n}}$$

is a seminorm in $L^{p,\lambda}(\Omega)$.

The space $L^{p,\lambda}(\Omega)$ is a norm space with, for instance, the following norm

$$||f||_{L^{p,\lambda}(\Omega)} = ||f||_{L^{p}(\Omega)} + |||f|||_{L^{p,\lambda}(\Omega)}.$$

Definition 2. We shall denote by $\varepsilon_0(Q^0)$ the linear space of functions u locally integrable in Q^0 , for which there exists a positive constant M depending on u such that for every $Q_i \subset Q_i^0$ there holds the inequality

$$\int_{Q} |u(x) - u_{Q}| dx \leq M \prod_{i=1}^{n} \mu(Q_{i}).$$

The expression

$$\left|\left|\left|u\right|\right|\right|_{\varepsilon_{0}\left(Q^{0}\right)}=\sup_{Q_{i}\subset Q_{i}^{0}}\prod_{i=1}^{n}\left[\mu\left(Q_{i}\right)\right]^{-1}\int\limits_{Q}\left|u\left(x\right)-u_{Q}\right|\mathrm{d}x$$

is a seminorm in $\varepsilon_0(Q^0)$.

The norm is, for instance,

$$||u||_{\varepsilon_0(Q^0)} = |||u|||_{\varepsilon_0(Q^0)} + ||u||_{L^1(Q^0)}.$$

Let T be a linear mapping defined on $L^1(Q^0)$.

Theorem 1. Let the linear mapping T be continuous simultaneously from $L^{\infty}(\Omega)$ into $\varepsilon_0(Q^0)$ and from $L^p(\Omega)$ into $L^p(Q^0)$ such that there hold the inequalities

$$(1) |||Tu|||_{\varepsilon_0(Q^0)} \leq M_1 ||u||_{L^{\infty}(\Omega)}, \forall u \in L^{\infty}(\Omega),$$

(2)
$$||Tu||_{L^{p}(Q^{0})} \leq M_{2} ||u||_{L^{p}(\Omega)}, \forall u \in L^{p}(\Omega), p_{n} \geq \cdots \geq p_{1} \geq 1.$$

Then, for all $t \in [0, 1]$, T is a continuous linear mapping from $L^r(\Omega)$ into $L^s(Q^0)$, where

(3)
$$\frac{1}{r_i} = \frac{1-t}{q_i} + \frac{t}{p_i}, \quad \frac{1}{s_i} = \frac{1-t}{1} + \frac{t}{p_i}, \quad p_i \leq q_i,$$

and for every $u \in L^r(\Omega)$ the inequality

$$||Tu||_{L^{s}(Q^{0})} \leq C_{t} ||u||_{L^{r}(\Omega)}$$

holds, where C_1 is a constant depending on m, p, q, r, s, Ω , Q^0 , M_1 , M_2 .

Proof. Let $\Delta: Q^0 = P_{i=1}^n Q_i^0 = \bigcup_k P_{i=1}^n Q_{ik}$, Q_{ik} — cube contained in Q_i , be a decomposition of Q^0 into a denumerable number of products $P_{i=1}^n Q_{ik}$, no

two of which have a common interior point. For every $u \in L^p(\Omega)$ let us denote by $\tau(u)$ the function defined on Q^0 which for every product $P_{i=1}^n Q_{ik}$ of decomposition Δ has the constant value

$$\prod_{i=1}^{n} \left[\mu \left(Q_{ik} \right) \right]^{-1} \int_{P_{i=1}^{n} Q_{ik}} \left| Tu - \left(Tu \right)_{P_{i=1}^{n} Q_{ik}} \right| dx$$

i. e.

$$(\tau u)(t) = \sum_{k} \prod_{i=1}^{n} [\mu(Q_{ik})]^{-1} \int_{P_{i=1}^{n} Q_{ik}} |Tu - (Tu)_{P_{i=1}^{n} Q_{ik}}| dx \chi_{P_{i=1}^{n} Q_{ik}}(t).$$

We observe that the mapping τ is sub-linear and

$$\| \tau u \|_{L^{\infty}(Q^0)} \leq \| Tu \|_{\varepsilon_0(Q^0)}.$$

Hence by (1) we have

$$\| \tau u \|_{L^{\infty}(Q^{0})} \leq M_{1} \| u \|_{L^{\infty}(\Omega)}.$$

Let us notice that for $p_n \ge \cdots \ge p_2 \ge p_1 \ge 1$ we have

$$\| \tau u \|_{L^{p}(Q^{0})} = \left\{ \int_{b^{Q^{0}}} |(\tau u)(t)|^{p} dt \right\}^{1/p_{n}}$$

$$\leq 2^{\frac{1}{p_{1}} + \dots + \frac{1}{p_{n-1}}} \sum_{k} \prod_{i=1}^{n} [\mu(Q_{ik})]^{-1} \int_{P_{i=1}^{n} Q_{ik}} |Tu - (Tu)|_{P_{i=1}^{n} Q_{ik}} |dx| \| \chi_{P_{i=1}^{n} Q_{ik}} \|_{L^{p}(Q^{0})}$$

$$\leq 2^{\frac{1}{p_{1}} + \dots + \frac{1}{p_{n-1}}} \sum_{k} \prod_{i=1}^{n} [\mu(Q_{ik})]^{\frac{1}{p_{i}} - 1} \int_{P_{i=1}^{n} Q_{ik}} |Tu - (Tu)|_{P_{i=1}^{n} Q_{ik}} |dx$$

$$\leq 2^{\frac{1}{p_{1}} + \dots + \frac{1}{p_{n-1}} + 1} \prod_{i=1}^{n} [\mu(Q_{i}^{0})]^{\frac{1}{p_{i}} - 1} \int_{Q^{0}} |Tu| dx.$$

Hence applying HÖLDER's inequality and (2) we get

(6)
$$\| \tau u \|_{L^{p}(Q^{0})} \leq C_{2}(p, M_{2}) \| u \|_{L^{p}(\Omega)}.$$

Thus by [5] n.3 (see also [6]) we obtain

(7)
$$\| \tau u \|_{M^{p}(Q^{0})} \leq C_{2}(p, M_{2}) \| u \|_{L^{p}(\Omega)}.$$

Then, the sub-linear mapping τ is continuous from $L^{\infty}(\Omega)$ into $\varepsilon_0(Q^0)$ and from $L^p(\Omega)$ into $M^p(Q^0)$ and the inequalities (5) and (7) hold i. e. τ is of weak types: (∞, ∞) and (p, p). Applying Th. 1 [6] we obtain that τ is of a strong type (q, q) and for every $p_i < q_i < \infty$ the following inequality holds

$$\| \tau u \|_{L^{q}(Q^{0})} \leq C_{3}(q, q) M_{1}^{1-(p_{i}|q_{i})} C_{2}^{p_{i}|q_{i}}(p, M_{2}) \| u \|_{L^{q}(\Omega)}.$$

Hence

(8)
$$\| \tau u \|_{L^{q}(Q^{0})} \leq C_{4}(p, q, M_{1}, M_{2}) \| u \|_{L^{q}(\Omega)}.$$

Next, let us prove that the linear mapping $u \mapsto [Tu - (Tu)_{0^0}]$ is:

a) of strong type (q, 1), b) of strong type (p, p) and there hold the inequalities

(9)
$$||Tu - (Tu)_{Q^0}||_{L^1(Q^0)} \le C_5(p, q, Q^0, M_1, M_2) ||u||_{L^q(\Omega)},$$

(10)
$$|| Tu - (Tu)_{Q^0} ||_{L^p(Q^0)} \leq 2 M_2 || u ||_{L^p(\Omega)}.$$

Proof of a). We have for $q_n \ge \cdots \ge q_2 \ge q_1 \ge 1$

$$\sup_{\Delta} \sum_{k} \prod_{i=1}^{n} \left[\mu \left(Q_{ik} \right) \right]^{(1/q_i)-1} \int_{P_{i=1}^{n} Q_{ik}} \left| Tu - \left(Tu \right)_{P_{i=1}^{n} Q_{ik}} \right| dx$$

$$= \sup_{\Delta} \sum_{k} \prod_{i=1}^{n} \left[\mu \left(Q_{ik} \right) \right]^{-1} \int_{P_{i=1}^{n} Q_{ik}} \left| Tu - \left(Tu \right)_{P_{i=1}^{n} Q_{ik}} \right| dx \left\| \chi_{P_{i=1}^{n} Q_{ik}} \right\|_{L^{q}(Q^{0})}$$

$$\leq \left\| \tau u \right\|_{L^{q}(Q^{0})},$$

If we take a decomposition Δ of the set $P_{i=1}^n Q_i^0$ containing only one set, i.e. $\bigcup P_{i=1}^n Q_{ik} = P_{i=1}^n Q_i^0$ then we have

$$\prod_{i=1}^{n} \left[\mu \left(Q_{i}^{0} \right) \right]^{(1/q_{i})-1} \int_{P_{i=1}^{n} Q_{i}^{0}} \left| Tu - \left(Tu \right)_{P_{i=1}^{n} Q_{i}^{0}} \right| dx$$

$$\leq \sup_{\Delta} \sum_{k} \prod_{i=1}^{n} \left[\mu \left(Q_{ik} \right) \right]^{(1/q_{i})-1} \int_{P_{i}^{n} + Q_{ik}} \left| Tu - \left(Tu \right)_{P_{i=1}^{n} Q_{ik}} \right| dx.$$

We obtain from the two above inequalities

$$||Tu - (Tu)_{Q^0}||_{L^1(Q^0)} \le \prod_{i=1}^n [\mu(Q_i^0)]^{1-(1/q_i)} || \tau u ||_{L^{q}(Q^0)}.$$

Hence and by (8) we get (9).

Proof of b). If we apply MINKOWSKI inequality, HÖLDER's inequality and (2), successively, we get

$$||Tu - (Tu)_{Q^0}||_{L^p(Q^0)} \leq ||Tu||_{L^p(Q^0)} + |(Tu)_{Q^0}| \prod_{i=1}^n [\mu(Q_i^0)]^{1/p_i}$$

$$\leq 2 M_2 ||u||_{L^p(Q^0)}.$$

Hence (10) follows.

Then, by (9) and (10), we apply the RIESZ-THORIN th. [1] and get that the linear mapping $u \mapsto [Tu - (Tu)_{Q^0}]$ is of strong type (r, s) where the conditions (3) are satisfied and the following inequality holds

(11)
$$||Tu - (Tu)_{Q^0}||_{L^{s}(Q^0)} \leq C_5^{1-t} (2 M_2)^t ||u||_{L^{r}(\Omega)}$$

$$= C_6(p, q, r, s, Q^0, M_1, M_2) ||u||_{L^{r}(\Omega)}.$$

Taking into account MINKOWSKI's inequality, Hölder's inequality, (2) and (11) we obtain for $r_i \ge p_i$

$$||Tu||_{L^{s}(Q^{0})} \leq ||Tu - (Tu)_{Q^{0}}||_{L^{s}(Q^{0})} + |(Tu)_{Q^{0}}| \prod_{i=1}^{n} [\mu(Q_{i}^{0})]^{1/s_{i}}$$

$$\leq C_{5} ||u||_{L^{r}(\Omega)} + \prod_{i=1}^{n} [\mu(Q_{i}^{0})]^{(1/s_{i}) - (1/p_{i})} ||Tu||_{L^{p}(Q^{0})}$$

$$\leq C_{5} ||u||_{L^{r}(\Omega)} + \prod_{i=1}^{n} [\mu(Q_{i}^{0})]^{(1/s_{i}) - (1/p_{i})} \cdot M_{2} ||u||_{L^{p}(\Omega)}$$

$$\leq C_{5} ||u||_{L^{r}(\Omega)} + \prod_{i=1}^{n} [\mu(Q_{i}^{0})]^{(1/s_{i}) - (1/p_{i})} \cdot [\mu(\Omega_{i})]^{(1/p_{i}) - (1/r_{i})} \cdot M_{2} ||u||_{L^{r}(\Omega)}.$$

Hence (4) follows.

From Def. 1 and Def. 2 we notice easily that

$$|||u|||_{\varepsilon_0(Q^0)} = |||u|||_{L^1, N_{(Q^0)}}$$

and that the spaces $L^{p,0}(\Omega)$ and $L^p(\Omega)$ are isomorphic. Also we know that bilipschitz transformation leaves $L^{p,\lambda}(\Omega)$ invariant (see [4] n. 1). Hence, we can substitute the respective norms and seminorms in Th. 1 by equivalent norms and seminorms, formally writing Ω instead of Q^0 . Then we obtain

Theorem 2. Let the linear mapping T be continuous simultaneously from $L^{\infty}(\Omega)$ into $L^{1,N}(\Omega)$ and from $L^p(\Omega)$ into $L^p(\Omega)$ and such that there hold the inequalities

(1)'
$$|||Tu|||_{L^{1},N_{(\Omega)}} \leq M_{1}||u||_{L^{\infty}(\Omega)}, \forall u \in L^{\infty}(\Omega),$$

(2)'
$$||Tu||_{L^{p}(\Omega)} \leq M_{2} ||u||_{L^{p}(\Omega)}, \forall u \in L^{p}(\Omega), p_{n} \geq \cdots \geq p_{1} \geq 1.$$

Then for all $t \in [0, 1]$ T is continuous linear mapping from $L^r(\Omega)$ into $L^s(\Omega)$ (where conditions (3) are satisfied) and for every $u \in L^r(\Omega)$ the inequality

$$(4)' || Tu ||_{L^{s}(\Omega)} \leq C_1 || u ||_{L^{r}(\Omega)}$$
holds.

3. Basic notions of this part are taken from [4] and [7]. Let us consider a linear differential elliptic operator of the second order:

$$E(u) = \sum_{i,j=1}^{N} \frac{\partial}{x_i} \left[a_{ij}(x) \frac{\partial u}{\partial x_i} \right], \qquad a_{ij} = a_{ji}$$

where a_{ij} satisfy Hölder's condition in $\overline{\Omega}$ and following condition is satisfied:

$$v^{-1} |\xi|^2 \le \sum_{i,j} a_{ij}(x) \xi_i \xi_j \le v |\xi|^2, \quad v > 0$$

for every $\xi \in \mathbb{R}^N$, $x \in \overline{\Omega}$.

Let $f_j \in L^2(\Omega)$, $j = 1, \ldots, N$. Let $u \in H_0^{1,2}(\Omega)$ (where $H_0^{1,2}(\Omega)$) be the set of functions u with compact support in Ω , such that $u \in L^2(\Omega)$ and its distributional derivatives $\frac{\partial u}{\partial x_i} \in L^2(\Omega)$, $i = 1, \ldots, N$). Moreover, let u be a solution of the equation

$$E(u) = \sum_{i=1}^{N} \frac{\partial f_i}{\partial x_j}.$$

It is well known (see [4] n. 3) that a unit solution exists and that

(12)
$$\sum_{i=1}^{N} \left\| \frac{\partial u}{\partial x_i} \right\|_{L^2(\Omega)}^2 \leq v^2 \sum_{i=1}^{N} \left\| f_i \right\|_{L^2(\Omega)}^2.$$

It was proved by S. CAMPANATO, see [2], that if $f_j \in L^{2,N}(\Omega)$ and is of the class $C^{1,\alpha}$, $\alpha > 0$ (for def. of $C^{1,\alpha}$ see [2] p. 362) then there exists a constant $C_7 > 0$ such that

(13)
$$\sum_{i=1}^{N} \left\| \frac{\partial u}{\partial x_i} \right\|_{L^{2, N}(\Omega)} \leq C_7 \sum_{j=1}^{N} \|f_j\|_{L^{2, N}(\Omega)}.$$

On the other hand we know by Def. 1 and by HÖLDER's inequality, that

$$||u||_{L^{1}, N(\Omega)} \leq C_{8} ||u||_{L^{2}, N(\Omega)}.$$

We know also by [7]- 4.7 that

(15)
$$||u||_{L^{2}, N_{(\Omega)}} \leq C_{9} ||u||_{L^{\infty}(\Omega)}.$$

The inequalities (13), (14) and (15) imply

(16)
$$\sum_{i=1}^{N} \left\| \frac{\partial u}{\partial x_i} \right\|_{L^{1, N}(\Omega)} \leq C_{10} \sum_{i=1}^{N} \left\| f_i \right\|_{L^{\infty}(\Omega)}.$$

Now, let G be the Green's operator corresponding to the DIRICHLET problem described above. Putting $F = (f_1, \ldots, f_N)$, we can write u = G(F). Denote by G_{hk} the linear operators defined on $L^2(\Omega)$ by $G_{hk}(f) = \frac{\partial}{\partial x_h} G(F_k)$ where $F_k = (0, \ldots, 0, f, 0, \ldots, 0)$ with f in the k-th place. It is obvious that $\frac{\partial u}{\partial x_h} = \sum_{k=1}^{N} G_{hk}(f_k)$. Estimates (12) and (16) indicate that every G_{hk} is continuous linear operator from $L^2(\Omega)$ into $L^2(\Omega)$ as well from $L^\infty(\Omega)$ into $L^{1,N}(\Omega)$. Then (1)' and (2)' for $p_i = 2$ of Th. 2 are satisfied. Thus G_{hk} is continuous inear operator from $L^r(\Omega)$ into $L^s(\Omega)$, with conditions (3), $(h, k = 1, \ldots, N)$ and

$$\sum_{n=1}^{N} \left\| \frac{\partial u}{\partial x_h} \right\|_{L^{s}(\Omega)} \leq C_{11} \sum_{n=1}^{N} \|fh\|_{L^{r}(\Omega)}.$$

REFERENCES

- A. Benedek and R Panzone: The spaces L^p with mixed norm. Duke Math. J. 28 (1961), 301-324.
- 2. S. CAMPANATO: Equazioni ellittiche del II⁰ ordine e spazi L^{2, λ}. Ann. di Mat. Pura ed Appl. 69 (1969), 321—381.
- 3. S. CAMPANATO: Su un teorema di interpolazione di G. Stampacchia, Ann. Scuola Norm. Sup. Pisa s. III. 20 (1966), 649-652.
- 4. S. Campanato and G. Stampacchia: Sulle maggiorazioni in L^p nella teoria delle equazioni ellittiche, Boll U. M. I. 3. 20 (1965), 393—399.
- M. JAROSZEWSKA: On interpolation in the L^{p, λ}-spaces with mixed norms. Boll. U. M. I.
 14-B (1977), 149—159.
- M. JAROSZEWSKA: On interpolation in the L^{p, Φ}-spaces with mixed norms. Functiones et Approximatio 8 (1980), 119—128.
- 7. A. KUFNER, O. JOHN and S. FUČIK: Function spaces. Praque 1977.