666. ON CONVEXITY PRESERVING MATRIX TRANSFORMATIONS*

Alexandru Lupas

1. A sequence $a=\left(a_{n}\right)_{n=0}^{\infty}$ is said to be convex of order r if $\triangle^{r} a_{n} \geqq 0$, $n=0,1, \ldots$, where

$$
\Delta^{r} a_{n}=\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} a_{n+k} .
$$

If $\left\|p_{n, i}\right\|, i=0,1, \ldots, n ; n=0,1, \ldots$, is a triangular matrix of real numbers, let $A(a)=\left(A_{n}(a)\right)_{n=0}^{\infty}$ be the sequence defined as

$$
\begin{equation*}
A_{n}(a)=\sum_{k=0}^{n} p_{n, n-k} a_{k}, \quad n=0,1, \ldots \tag{1}
\end{equation*}
$$

If K_{r} denotes the set of all sequences which are convex of order r, then we say that the matrix transformation $A: a \rightarrow A(a)$ preserves the r-convexity if and only if for every $a \in K_{r}$ one has $A(a) \in K_{r}$: in other words, iff $A\left(K_{r}\right) \subseteq K_{r}$.
2. Let us present some particular sequences: if j is a non-negative integer we denote by $e_{*}=e_{*}(j)=\left(e_{n}(j)\right)_{n=0}^{\infty}$ the sequence whose terms are

$$
e_{k}(j)=\left\{\begin{array}{ll}
0, & k=0,1, \ldots, j-1 \\
C \cdot\binom{k}{j}, & k=j, j+1, j+2,, \ldots
\end{array} \quad C \in \mathbf{R} \backslash\{0\} .\right.
$$

Further, for a fixed integer $s, s \geqq 0$, let $f_{*}=f_{*}(s)=\left(f_{n}(s)\right)_{n=0}^{\infty}$ defined as

$$
f_{k}(s)= \begin{cases}0, & k=0,1, \ldots, s+r-1 \\ \binom{k-s-1}{r-1}, & k=s+r, s+r+1, \ldots\end{cases}
$$

Using the identity (see for instance [5], page 147)

$$
\sum_{i=0}^{N}(-1)^{N-i}\binom{N}{i}\binom{a+m i}{k}=0 \quad \text { if } \quad N>k
$$

[^0]as well as the notation
\[

$$
\begin{gather*}
s_{0}(n, k)=p_{n, k}, \\
s_{m+1}(n, k)=\sum_{j=0}^{k} s_{m}(n, j)=\sum_{j=0}^{k}\binom{k+m-j}{m} p_{n, j} \quad m=0,1, \ldots, \\
X_{n}(m, k)= \begin{cases}0, & n<k \\
s_{m}(n, n-k), & n \geqq k\end{cases} \tag{2}
\end{gather*}
$$
\]

the following proposition may be established:
Lemma 1. If $e_{*}(j), f_{*}(s)$ are the sequences defined as above, then

$$
\begin{gather*}
A_{n}\left(e_{*}(j)\right)=C \cdot X_{n}(j+1, j) ; \quad A_{n}\left(f_{*}(s)\right)=X_{n}(r, s+r), \tag{3}\\
\Delta^{i} e_{0}(j)=\left\{\begin{array}{ll}
0, & i \neq j \\
C, & i=j
\end{array} ; \quad \Delta^{m} f_{0}(s)=0 \quad \text { if } m \leqq r-1,\right. \tag{4}\\
\Delta^{r} e_{i}(j)=0 \quad \text { for } \quad i=0,1, \ldots(0 \leqq j \leqq r-1) ; \quad \Delta^{r} f_{i}(s)= \begin{cases}0, & i \neq s \\
1, & i=s\end{cases} \tag{5}
\end{gather*}
$$

3. Professor D. S. Mitrinović (see [2]) has raised the problem of finding the set of all matrices $\left\|p_{n, i}\right\|$ which furnish matrix transformations $A:\left(a_{n}\right) \rightarrow\left(A_{n}(a)\right)$ which preserve the r-convexity. Some kinds of such transformations were investigated in [1]-[3] and [6].

Our purpose is to present a solution for the case when A is defined by means of (1).

Lemma 2. Let $a=\left(a_{n}\right)_{n=0}^{\infty}$ be an arbitrary sequence of real numbers. If $\left(A_{n}(a)\right)_{n=0}^{\infty}$ is defined as in (1), then

$$
\begin{equation*}
\Delta^{r} A_{n}(a)=\sum_{j=0}^{r-1} \Delta^{j} a_{0} \cdot \Delta^{r} X_{n}(j+1, j)+\sum_{j=0}^{n} \Delta^{r} a_{j} \cdot \Delta^{r} X_{n}(r, j+r) \tag{6}
\end{equation*}
$$

where $\left(X_{n}(m, k)\right)_{n=0}^{\infty}$ is given in (2).
Proof. Let $K_{0}, \ldots, K_{r-1}, C_{0}, \ldots, C_{n}$ be such that

$$
\begin{equation*}
\Delta^{r} A_{n}(a)=\sum_{i=0}^{r-1} \Delta^{i} a_{0} \cdot K_{i}+\sum_{i=0}^{n} C_{i} \cdot \Delta^{r} a_{i} . \tag{7}
\end{equation*}
$$

Taking into account that $\Delta^{r} A_{n}(\cdot)$ is a linear map we observe that the numbers K_{i} and C_{i} does not depend on the sequence $\left(a_{n}\right)_{n=0}^{\infty}$. Moreover, if we identify in (7) the coefficients of $a_{0}, a_{1}, \ldots, a_{n+r}$ one finds a linear system of $n+r+1$ equations with the unknowns $K_{0}, \ldots, K_{r-1}, C_{0}, \ldots, C_{n}$. It is observed that the determinant of this system is $\neq 0$: for a particular case see [4]. Setting in (7) $a=e_{*}(j), 0 \leqq j \leqq r-1$, one finds (see (3)-(5))

$$
K_{j}=\frac{1}{C} \Delta^{r} A_{n}\left(e_{*}(j)\right)=\Delta^{r} X_{n}(j+1, j), \quad j=0,1, \ldots, r-1 .
$$

If we select $a=f_{*}(s)$ then (7) together with (3)-(5) furnish us

$$
C_{s}=\Delta^{r} A_{n}\left(f_{*}(s)\right)=\Delta^{r} X_{n}(r, s+r), \quad s=0,1, \ldots
$$

which proves (6).

Theorem 3. Let $A_{n}(a)$ be defined as in (1). The matrix transformation $A: a \rightarrow\left(A_{n}(a)\right)_{n=0}^{\infty}$ preserves the r-convexity if and only if

$$
\begin{equation*}
\Delta^{r} X_{n}(j+1, j)=0 \quad \text { for } \quad j=0,1, \ldots, r-1 ; \quad n=0,1, \ldots, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{r} X_{n}(r, i+r) \geqq 0 \quad \text { for } \quad i=0,1, \ldots, n ; \quad n=0,1, \ldots \tag{9}
\end{equation*}
$$

Proof. Let $a \in K_{r}$ and suppose that (8)-(9) are valid. The identity (6) implies

$$
\Delta^{r} A_{n}(a)=\sum_{i=0}^{n} \Delta^{r} a_{i} \cdot \Delta^{r} X_{n}(r, i+r) \geqq 0, \quad n=0,1, \ldots
$$

Now suppose that $A\left(K_{r}\right) \subseteq K_{r}$. An element from K_{r} is the sequence $e_{*}(j)(0 \leqq j \leqq r-1)$: indeed $\Delta^{r} e_{n}(j)=0, n=0,1, \ldots$. Therefore we must have $\Delta^{r} A_{n}\left(e_{*}(j)\right) \geqq 0$. But this is equivalent with $C \cdot \Delta^{r} X_{n}(j+1, j) \geqq 0$ for every $C \in \mathbf{R} \backslash\{0\}$. In conclusion $\Delta^{r} X_{n}(j+1, j)=0, j=0,1, \ldots, r-1$. Another r-convex sequence is $f_{*}(s)$. Using the fact that $\Delta^{r} A_{n}\left(f_{*}(s)\right)=\Delta^{r} X_{n}(r, s+r)$ the proof is complete.

Finally, we note that if $A_{n}{ }^{*}(a)=\frac{1}{n+1} \sum_{k=0}^{n} a_{k}$ then the identity (6) furnishes us

$$
\begin{equation*}
\Delta^{r} A_{n}^{*}(a)=\sum_{j=0}^{n} \frac{(j+1)(j+2) \cdots(j+r)}{(n+1)(n+2) \cdots(n+r+1)} \Delta^{r} a_{j} . \tag{10}
\end{equation*}
$$

The equality (10) implies that the implication $\Delta^{r} a_{n} \geqq 0 \Rightarrow \Delta^{r} A_{n}^{*}(a) \geqq 0$ is true.

REMARK OF THE EDITORIAL COMMITTEE

This paper was receiwed simultaneously witz the paper B. Kotкowski, A. Waszak: An application of Abel's transformation. These Publications № 602 —№ 633 (1978), 203-210.

REFERENCES

1. I. B. Lacković, S. K. Simić: On weighted arithmetic means which are invariant with respect to k-th order convexity. These Publications № 461 - № 497 (1974), 159-166.
2. D. S. Mitrinovié, I. B. Lacković, M. S. Stanković: Addenda to the monograph ,„Analytic inequalities", Part II: On some convex sequences connected with N. Ozeki's results. Same Publications pp. 3-24.
3. N. Ozexi: On the convex sequences (IV). J. College Arts Sci. Chiba Univ. B4 (1971), 1—4.
4. T. Popoviciu: Introduction à la théorie des différences divisées. Bull. Math. de la Soc. Roumaine des Sci., 42 (1940), 65-78.
5. I. J. Schwatt: An introduction to the operations with series. (Second edition), New York 1924.
6. P. M. Vasić, J. D. Keckić, I. B. Lacković, Z̆. M. Mitrović: Some properties of arithmetic means of real sequences. Mat. Vesnik 9 (24) (1972), 205-212.

Facultatea de mecanică
Str. I. Ratịiu nr. 7
2400 SIBIU, R. S. România.

[^0]: * Presented January 10, 1978 by D. S. Mitrinović.

