ON THE JENSEN INEQUALITY

Petar M. Vasić and Josip E. Pečarić

In this paper we shall give some new results on the JENSEN inequality for convex functions and some applications on inequalities connecting the arithmetic and the geometric means.

1. The Jensen inequality

Theorem 1. If $f: I \rightarrow \mathbf{R}$ is a convex function, $x=\left(x_{1}, \ldots, x_{n}\right) \in I^{n}(n \geqq 2), p$ is positive n-tple, then

$$
\begin{equation*}
f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leqq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \quad\left(P_{n}=\sum_{i=1}^{n} p_{i}\right) . \tag{1}
\end{equation*}
$$

If f is a strictly convex function, inequality (1) is strict unless $x_{1}=\cdots=x_{n}$.
Remarks. 1° Inequality (1) is the well-known Jensen inequality. 2° On the history of the Jensen inequality see [1].

From Theorem 1 we can get the inequality between the arithmetic and the geometric means:

Corollary 1. Let x, p be two n-tples of positive numbers then

$$
\begin{equation*}
G_{n}(x ; p) \leqq A_{n}(x ; p) \tag{2}
\end{equation*}
$$

where

$$
G_{n}(x ; p)=\left(\prod_{i=1}^{n} x_{i}^{p_{i}}\right)^{1 / P_{n}}, \quad A_{n}(x ; p)=\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}
$$

The equality occurs in (2) if and only if $x_{1}=\cdots=x_{n}$.
Corollary 2. Let x and p be two n-tples of positive numbers and let function f satisfy $1^{\circ} f(x)$ is concave, $2^{\circ} x f(x)$ is convex for every $x \in[0, b]$. Then

$$
\begin{equation*}
\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \leqq f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leqq \frac{\sum_{i=1}^{n} p_{i} x_{i} f\left(x_{i}\right)}{\sum_{i=1}^{n} p_{i} x_{i}} \leqq f\left(\frac{\sum_{i=1}^{n} p_{i} x_{i}^{2}}{\sum_{i=1}^{n} p_{i} x_{i}}\right) \tag{3}
\end{equation*}
$$

For $f(x)=\log x$ we get the generalization of the result from [3], i.e.

$$
G_{n}(x ; p) \leqq A_{n}(x ; p) \leqq G_{n}(x ; p x) \leqq A_{n}(x ; p x)
$$

where $p x=\left(p_{1} x_{1}, \ldots, p_{n} x_{n}\right)$.

2. The inverse Jensen inequality

Theorem 2. Let p be a n-tple of real numbers such that

$$
\begin{equation*}
p_{1}>0, \quad p_{i} \leqq 0(i=2, \ldots, n), \quad P_{n}>0 . \tag{4}
\end{equation*}
$$

If $f: I \rightarrow \mathbf{R}$ is a convex function, $x \in I^{n}, \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i} \in I$, then the reverse of (1) holds. The equality holds under the same conditions as in Theorem 1.

Theorem 2 for $n=2$ was proved in [7].
Proof. By substitutions

$$
\begin{equation*}
p_{1}=P_{n}, x_{1}=\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i} ; \quad p_{i}=-p_{i}, \quad x_{i}=x_{i} \quad(i=2, \ldots, n) \tag{5}
\end{equation*}
$$

from Theorem 1, we get Theorem 2.
Corollary 3. Let x be a positive n-tple and let p be a real n-tple such that (4) holds. Then the reverse of (2) holds.

Proof. Let $\sum_{i=1}^{n} p_{i} x_{i}>0$. For $f(x)=-\log x$, from Theorem 2 we get (2) with the reverse inequality. If $\sum_{i=1}^{n} p_{i} x_{i}<0$ this result is obvious.

Using (5), we can get Corollary 3 from Corollary 1, too.

3. Refinement of the Jensen inequality

Let I be a finite nonempty set of positive integers. If we define the index set function F by

$$
F(I)=\sum_{i \in I} p_{i} f\left(\frac{1}{P_{I}} \sum_{i \leq I} p_{i} x_{i}\right)-\sum_{i \in I} p_{i} f\left(x_{i}\right),
$$

and if

$$
P_{I}=\sum_{i \in I} p_{i}, \quad A_{I}(x ; p)=\frac{1}{P_{I}} \sum_{i \in I} p_{i} x_{i}, \quad G_{I}(x ; p)=\left(\prod_{i \in I} x_{i}^{p_{i}}\right)^{1 / P_{I}},
$$

then the following theorem is valid:
Theorem 3. If $f:[a, b] \rightarrow \mathbf{R}$ is a convex function on $[a, b], I$ and J finite nonempty sets of positive integers such that $I \cap J=\varnothing, p=\left(p_{i}\right)_{i \in I \cup J}$ and $x=\left(x_{i}\right)_{i \in I \cup J}$ are real sequences such that $x_{i} \in[a, b](i \in I \cup J), A_{M}(x ; p) \in[a, b](M=I, J, I \cup J), P_{I_{\cup J}}>0$.

Let $P_{I}>0$ and $P_{J}>0$, then

$$
\begin{equation*}
F(I \cup J) \leqq F(I)+F(J) \tag{6}
\end{equation*}
$$

If $P_{I} P_{J}<0$ the sense of (6) reverses. If f is a strictly convex function, equality in (6) holds if and only if $A_{I}(x ; p)=A_{J}(x ; p)$.

Proof. By substitutions

$$
x_{1}=A_{I}(x ; p), \quad p_{1}=P_{I}, \quad x_{2}=A_{J}(x ; p), \quad p_{2}=P_{J}
$$

from the JENSEN inequality for $n=2$, we get (6). Analogously from Theorem 2 for $n=2$, we get (6) with the reverse inequality.

Corollary 4. If $p_{i} \geqq 0(i=1, \ldots, n), I_{k}=\{1, \ldots, k\}$ then

$$
\begin{equation*}
F\left(I_{n}\right) \leqq F\left(I_{n-1}\right) \leqq \cdots \leqq F\left(I_{2}\right) \leqq 0 . \tag{7}
\end{equation*}
$$

With the same assumption on p, x as in Theorem 2, we have the reverse inequalities in (7).

Remarks. 3° Inequalities (6) and (7) for a positive sequence p was proved in [4].
4° Substituting I (i.e. $[a, b]$) by a convex set U from \mathbf{R}^{n} and x_{i} by points from U, Theorems $1,2,3$ remain valid even for convex functions in several variables with the same proofs as in single--dimensional case.

Now, let be

$$
\begin{gathered}
\rho(I)=P_{I}\left(A_{I}(x ; p)-G_{I}(x ; p)\right) \quad(I \neq \varnothing), \quad \rho(\varnothing)=0 ; \\
\pi(I)=\left(\frac{A_{I}(x ; p)}{G_{I}(x ; p)}\right)^{P_{I}} \quad(I \neq \varnothing), \quad \pi(\varnothing)=0 .
\end{gathered}
$$

Then the following result is valid:
Corollary 5. Let $x=\left(x_{i}\right)_{i \in I \cup J}$ be a positive sequence and let $p=\left(p_{i}\right)_{i \in I J J}$ be a real sequence such that $P_{I \cup J}>0$.
(a) Let $P_{I}>0, P_{J}>0$. Then

$$
\begin{equation*}
\rho(I \cup J) \geqq p(I)+p(J) . \tag{8}
\end{equation*}
$$

If $P_{I} P_{J}<0$ then the sense of (8) reverses. The equality holds in (8) if and only if $G_{I}(x ; p)=G_{J}(x ; p)$.
(b) Let $A_{M}(x ; p)>0(M=I, J, I \cup J)$. If $P_{I}>0, P_{J}>0$, then

$$
\begin{equation*}
\pi(I \cup J) \geqq \pi(I) \pi(J), \tag{9}
\end{equation*}
$$

and if $P_{1} P_{J}<0$ then the sense of (9) reverses. The equality holds in (9) if and only if $A_{I}(x ; p)=A_{J}(x ; p)$.

Proof. Let $P_{I}>0, P_{J}>0$. Inequalities (8) and (9) could be written in the following way

$$
\frac{P_{I}}{P_{I} \cup J} G_{I}(x ; p)+\frac{P_{J}}{P_{I} \cup J} G_{J}(x ; p) \geqq G_{I}(x ; p)^{P_{I} P_{I} \cup J} G_{J}(x ; p)^{P_{J} / P_{I \cup J}},
$$

and

$$
\frac{P_{I}}{P_{I} \cup J} A_{I}(x ; p)+\frac{P_{J}}{P_{I \cup J}} A_{J}(x ; p) \geqq A_{I}(x ; p)^{P_{I I} P_{I \cup J}} A_{J}(x ; p)^{P_{J} / P_{I} \cup J},
$$

which is true on the basis of Corollary 1. Analogously using Corollary 3 we get the reverse inequalities.

Remark. 5° Corollary 5 is the generalisation of the well-known Everitt result (see, for example [1, p. 54]).

Corollary 6. If p is a positive n-tple then

$$
\begin{gather*}
\rho\left(I_{n}\right) \geqq \rho\left(I_{n-1}\right) \geqq \cdots \geqq \rho\left(I_{2}\right) \geqq 0, \tag{10}\\
\pi\left(I_{n}\right) \geqq \pi\left(I_{n-1}\right) \geqq \cdots \geqq \pi\left(I_{2}\right) \geqq 1, \tag{11}
\end{gather*}
$$

$$
\begin{gather*}
A_{n}(x ; p)-G_{n}(x ; p) \geqq \frac{1}{P_{n}} \max _{1 \leqq j, k \leqq n}\left(x_{j} p_{j}+x_{k} p_{k}-\left(p_{j}+p_{k}\right)\left(x_{j}^{p_{j}} x_{k}^{\left.p_{k}\right)^{\frac{1}{p_{j}+p_{k}}}}\right),\right. \tag{12}\\
\frac{A_{n}(x ; p)}{G_{n}(x ; p)} \geqq \max _{1 \leqq j, k \leqq n}\left(\left(\frac{x_{j} p_{j}+x_{k} p_{k}}{p_{j}+p_{k}}\right)^{p_{j}+p_{k}} x_{j}^{-p_{j}} x_{k}^{-p_{k}}\right)^{1 / P_{n}} . \tag{13}
\end{gather*}
$$

If p is a real n-tple such that (4) holds and $\sum_{i=1}^{n} p_{i} x_{i} \geqq 0$, then the reverse inequalities in (10) and (11) and the following results hold:

$$
\begin{gather*}
A_{n}(x ; p)-G_{n}(x ; p) \leqq \frac{1}{P_{n}} \min _{2 \leqq k \leqq n}\left(x_{1} p_{1}+x_{k} p_{k}-\left(p_{1}+p_{k}\right)\left(x_{1} p_{1} x_{k}^{p_{k}}\right)^{\frac{1}{p_{1}+p_{k}}}\right), \tag{14}\\
\frac{A_{n}(x ; p)}{G_{n}(x ; p)} \leqq \min _{2 \leqq k \leqq n}\left(\left(\frac{x_{1} p_{1}+x_{k} p_{k}}{p_{1}+p_{k}}\right)^{p_{1}+p_{k}} x_{1}^{-p_{1}} x_{k}^{-p_{k}}\right)^{1 / P_{n}} \tag{15}
\end{gather*}
$$

Remark. 6° The results from Corollary 6 are the generalization of the well-known Rado and Popovictu inequalities (see [1, pp. 49-51]).

4. Converses of the Jensen inequality

A converse of the Jensen inequality is given in [5]:
Theorem 4. If $f: I \rightarrow \mathbf{R}$ is a convex function, $x_{i} \in[m, M] \subseteq I(i=1, \ldots, n), p$ is a positive n-tple, then

$$
\begin{equation*}
\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \leqq \frac{M-\bar{x}}{M-m} f(m)+\frac{\bar{x}-m}{M-m} f(M), \tag{16}
\end{equation*}
$$

where $\bar{x}=A_{n}(x ; p)$.
The right-hand side is a nondecreasing function of M and a nonincreasing function of m. There is equality in (16) if and only if $x_{i}=m(i \in J \subset\{1, \ldots, n\})$ and $x_{i}=M(i \subset\{1, \ldots, n\} \backslash J)$.

Remark. 7° In [6] it was shown that Teorem 4 could be obtained from the Jensen inequality.
In [2] the following two theorems were given:
Theorem 5. If $f: I \rightarrow \mathbf{R}, f(x)>0, f^{\prime \prime}(x)>0$ for $x \in I, x_{i} \in I(i=1, \ldots, n), p$ is a positive n-tple then

$$
\begin{equation*}
\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \leqq \lambda f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right), \tag{17}
\end{equation*}
$$

where $m=\min (x), M=\max (x)$ and λ is a solution of the equation

$$
\begin{equation*}
\lambda f\left(f^{\prime-1}\left(\frac{f(M)-f(m)}{\lambda(M-m)}\right)\right)=\frac{f(M)-f(m)}{M-m} f^{\prime-1}\left(\frac{f(M)-f(m)}{\lambda(M-m)}\right)+\frac{M f(m)-m f(M)}{M-m} . \tag{18}
\end{equation*}
$$

Theorem 6. Let the conditions of the Theorem 5 be fulfilled. Then

$$
\begin{equation*}
\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \leqq \mu+f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right), \tag{19}
\end{equation*}
$$

where

$$
\mu=\frac{f(M)-f(m)}{M-m} f^{\prime-1}\left(\frac{f(M)-f(m)}{M-m}\right)+\frac{M f(m)-m f(M)}{M-m}-f\left(f^{\prime-1}\left(\frac{f(M)-f(m)}{M-m}\right)\right) .
$$

Remarks. 8° The conditions for the validity of the equality in (17) are given in [2].
9° We note that inequality (16) is stronger than (17) and (19). Easily it is shown that inequality (16) could be used in the proof of (17) and (19) (see [2]), and then we get that λ and μ are non-decreasing functions of M and nonincreasing functions of m.
10° Analogously we can get
(a) If $f(m)=0$ and $f^{\prime}(m) \neq 0$ then $\lambda=f(M) /\left(f^{\prime}(m)(M-m)\right)$;
(b) If $f(M)=0$ and $f^{\prime}(M) \neq 0$ then $\lambda=-f(m) /\left(f^{\prime}(M)(M-m)\right)$.
11° For converse inequalities for inequality (2) see [1, pp. 63-64].

REFERENCES

1. D. S. Mitrinović, P. S. Bullen, P. M. Vasić: Sredine i sa njima povezane nejednakosti. These Publications № 600 (1977).
2. D. S. Mitrinović and P. M. Vasić: The centroid method in inequalities. Ibid. № 498 № 541 (1975), 3-16.
3. Ž. M. Mijalković and J. B. Keller: Problem E 2691 . Amer. Math. Monthly 85 (1978).
4. P. M. Vasić and Ž. Mijalković: On an index set function connected with Jensen inequality. These Publications № 544 - № 576 (1976), 110-112.
5. P. LaH and M. Ribarič: Converse of Jensen's inequality for convex functions. Ibid. № $\mathbf{4 1 2}$ № 460 (1973), 201-205.
6. I. B. Lacković and J. E. Pečarić: Some remarks on the paper: "Converse of Jensen's inequality for convex functions" of P. Lah and M. Ribarič. (in pirnt).
7. J. AczÉl: Nejednakosti i njihova primena u elementarnom rešavanju zadataka sa maksimumom i minimumom. Matematička biblioteka sv. 18, Beograd 1961, pp. 111-138.

Faculty of Electrical Engineering,
Bulevar Revolucije 73
11000 Beograd, Yugoslavia.
Faculty of Civil Engineering,
Bulevar Revolucije 73
11000 Beograd, Yugoslavia.

