Univ. Beograd. Publ. Elektrotehn. Fak.

Ser. Mat. Fiz. N6 634 - Ne 677 (1979), 36 - 41.

637. NOTES ON CONVEX FUNCTIONS VI: ON AN INEQUALITY FOR CONVEX FUNCTIONS PROVED BY A. LUPAȘ

Petar M. Vasić and Ivan B. Lacković

Abstract

Using previously derived results, in our notes on convex functions, we will prove in the present paper that a pair of convex functions f and g satisfy the inequality (37) if and only if this inequality takes the form (38). This result is connected with earlier result (1) of A. Lupas.

1. In paper [1] A. Lupaş has proved the following statement:

Theorem 1. If $x \mapsto f(x)$ and $x \mapsto g(x)$ are convex functions on $[a, b]$ then the following inequality

$$
\begin{align*}
\int_{a}^{b} f(x) g(x) \mathrm{d} x & -\frac{1}{b-a}\left(\int_{a}^{b} f(x) \mathrm{d} x\right)\left(\int_{a}^{b} g(x) \mathrm{d} x\right) \tag{1}\\
& \geqq \frac{12}{(b-a)^{3}}\left(\int_{a}^{b}\left(x-\frac{a+b}{2}\right) f(x) \mathrm{d} x\right)\left(\int_{a}^{b}\left(x-\frac{a+b}{2}\right) g(x) \mathrm{d} x\right)
\end{align*}
$$

holds where the equality is obtained if at least one of the functions f or g is linear on the segment $[a, b]$.

If among these suppositions we suppose that the following equality

$$
\begin{equation*}
g\left(\frac{a+b}{2}-x\right)=g\left(\frac{a+b}{2}+x\right) \tag{2}
\end{equation*}
$$

is satisfied for $x \in\left[-\frac{b-a}{2}, \frac{b-a}{2}\right]$ then (1) is reduced to the very known inequality

$$
\begin{equation*}
\int_{a}^{b} f(x) g(x) \mathrm{d} x \geqq \frac{1}{b-a}\left(\int_{a}^{b} f(x) \mathrm{d} x\right)\left(\int_{a}^{b} g(x) \mathrm{d} x\right) \tag{3}
\end{equation*}
$$

If we introduce the substitution $x=a+(b-a) t$ in (1) we find that the inequality

$$
\begin{align*}
\int_{0}^{1} F(t) G(t) \mathrm{d} t & -\left(\int_{0}^{1} F(t) \mathrm{d} t\right)\left(\int_{0}^{1} G(t) \mathrm{d} t\right) \tag{4}\\
& \geq 3\left(\int_{0}^{1}(1-2 t) F(t) \mathrm{d} t\right)\left(\int_{0}^{1}(1-2 t) G(t) \mathrm{d} t\right)
\end{align*}
$$

where the functions F and G are defined by

$$
\begin{equation*}
F(t)=f(a+(b-a) t), G(t)=g(a+(b-a) t) \tag{5}
\end{equation*}
$$

Besides, it is quiet clear, that the functions f and g are convex on $[a, b]$ if and only if the functions F and G, defined by (5) are convex on [0,1].

In connection with inequality (4) we will consider a bilinear operator A which is of the following form

$$
\begin{align*}
A(f, g)=\int_{0}^{1} f(t) g(t) \mathrm{d} t & -\left(\int_{0}^{1} f(t) \mathrm{d} t\right)\left(\int_{0}^{1} g(t) \mathrm{d} t\right) \tag{6}\\
& -K\left(\int_{0}^{1} p(t) f(t) \mathrm{d} t\right)\left(\int_{0}^{1} q(t) g(t) \mathrm{d} t\right)
\end{align*}
$$

where K is a real constant such that $K \neq 0$. Under the certain conditions we will show that for every pair of convex functions we have

$$
\begin{equation*}
A(f, g) \geqq 0 \tag{7}
\end{equation*}
$$

if and only if the functions p and q are of the form which will be given below.
This result can be proved on the basis of our theorem which we have proved in paper [2]. This our theorem reads:

Theorem 2. A continuous, bilinear operator A, defined on $C[a, b] \times C[a, b]$ satisfies the condition (7) for every pair of functions f and g, convex on $[0,1]$, if and only if the following conditions are valid:

$$
\begin{equation*}
A\left(e_{i}, e_{j}\right)=0 \quad(i, j=0,1) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
A\left(e_{i}, w(t, c)\right)=A\left(w(t, c), e_{i}\right)=0 \quad(i=0,1) \tag{9}
\end{equation*}
$$

for every $c \in[0,1]$, and

$$
\begin{equation*}
A\left(w\left(t, c_{1}\right), w\left(t, c_{2}\right)\right) \geqq 0 \tag{10}
\end{equation*}
$$

for every pair $c_{1}, c_{2} \in[0,1]$, where the functions e_{0}, e_{1} and w are defined by

$$
\begin{equation*}
e_{0}(t)=1, \quad e_{1}(t)=t, \quad w(t, c)=|t-c| \quad(t, c \in[0,1]) \tag{11}
\end{equation*}
$$

In virtue of (6) and theorem 2 we can directly obtain the following conditions:

$$
\begin{align*}
& A\left(e_{0}, e_{0}\right)=-K\left(\int_{0}^{1} p(t) \mathrm{d} t\right)\left(\int_{0}^{1} q(t) \mathrm{d} t\right)=0 \tag{12}\\
& A\left(e_{0}, e_{1}\right)=-K\left(\int_{0}^{1} p(t) \mathrm{d} t\right)\left(\int_{0}^{1} t q(t) \mathrm{d} t\right)=0 \tag{13}\\
& A\left(e_{1}, e_{0}\right)=-K\left(\int_{0}^{1} t p(t) \mathrm{d} t\right)\left(\int_{0}^{1} q(t) \mathrm{d} t\right)=0 \tag{14}
\end{align*}
$$

$$
\begin{equation*}
A\left(e_{1}, e_{1}\right)=\frac{1}{12}-K\left(\int_{0}^{1} t p(t) \mathrm{d} t\right)\left(\int_{0}^{1} t q(t) \mathrm{d} t\right)=0 \tag{15}
\end{equation*}
$$

$$
\begin{gather*}
A\left(e_{0}, w(t, c)\right)=-K\left(\int_{0}^{1} p(t) \mathrm{d} t\right)\left(\int_{0}^{1}|t-c| q(t) \mathrm{d} t\right)=0, \tag{16}\\
A\left(w(t, c), e_{0}\right)=-K\left(\int_{0}^{1}|t-c| p(t) \mathrm{d} t\right)\left(\int_{0}^{1} q(t) \mathrm{d} t\right)=0, \\
A\left(e_{1}, w(t, c)\right)=\frac{c^{3}}{3}-\frac{c^{2}}{2}+\frac{1}{12}-K\left(\int_{0}^{1} t p(t) \mathrm{d} t\right)\left(\int_{0}^{1}|t-c| q(t) \mathrm{d} t\right)=0, \\
A\left(w(t, c), e_{1}\right)=\frac{c^{3}}{3}-\frac{c^{2}}{2}+\frac{1}{12}-K\left(\int_{0}^{1}|t-c| p(t) \mathrm{d} t\right)\left(\int_{0}^{1} t q(t) \mathrm{d} t\right)=0,
\end{gather*}
$$

$$
\begin{equation*}
A\left(w\left(t, c_{1}\right), w\left(t, c_{2}\right)\right)=\int_{0}^{1}\left|t-c_{1}\right|\left|t-c_{2}\right| \mathrm{d} t-\left(\int_{0}^{1}\left|t-c_{1}\right| \mathrm{d} t\right)\left(\int_{0}^{1}\left|t-c_{2}\right| \mathrm{d} t\right) \tag{19}
\end{equation*}
$$

$$
-K\left(\int_{0}^{1}\left|t-c_{1}\right| p(t) \mathrm{d} t\right)\left(\int_{0}^{1}\left|t-c_{2}\right| q(t) \mathrm{d} t\right) \geqq 0
$$

In such a way we obtain the following result:
Lemma 1. The inequality

$$
\begin{equation*}
\int_{0}^{1} f(t) g(t) \mathrm{d} t-\left(\int_{0}^{1} f(t) \mathrm{d} t\right)\left(\int_{0}^{1} g(t) \mathrm{d} t\right)-K\left(\int_{0}^{1} p(t) f(t) \mathrm{d} t\right)\left(\int_{0}^{1} q(t) g(t) \mathrm{d} t\right) \geqq 0 \tag{21}
\end{equation*}
$$

is valid for every pair f and g of convex functions if and only if the conditions (12)-(20) are satisfied.

We will show further that under the certain conditions the function p and q can be determined in such a way that the conditions (12)-(20) are satisfied for these functions. For that purpose we will introduce the following denotations

$$
\begin{gather*}
U(c)=\frac{c^{3}}{3}-\frac{c^{2}}{2}+\frac{1}{12}, \tag{22}\\
V\left(c_{1}, c_{2}\right)=A\left(w\left(t, c_{1}\right), w\left(t, c_{2}\right)\right), \tag{23}\\
u=\int_{0}^{1} p(t) \mathrm{d} t, v=\int_{0}^{1} q(t) \mathrm{d} t \tag{24}\\
P=\int_{0}^{1} t p(t) \mathrm{d} t, Q=\int_{0}^{1} t q(t) \mathrm{d} t \tag{25}
\end{gather*}
$$

From the condition (15) it follows that we have

$$
\begin{equation*}
K \neq 0, P \neq 0, Q \neq 0 \tag{26}
\end{equation*}
$$

where P and Q are given by (25). So, on the basis of (26) we have

$$
\begin{equation*}
K=\frac{1}{12 P Q} . \tag{27}
\end{equation*}
$$

By using (26) again on the basis of (13) and (14) we find that

$$
\begin{equation*}
u=v=0 \tag{28}
\end{equation*}
$$

where u and v are defined by (24). In such a way we find that if condition (28) is valid then the conditions (12), (16) and (17) are satisfied.

The conditions (26) and (18) i. e. (19) implies that

$$
\begin{align*}
& \int_{0}^{1}|t-c| q(t) \mathrm{d} t=12 Q U(c), \tag{29}\\
& \int_{0}^{1}|t-c| p(t) \mathrm{d} t=12 P U(c) \tag{30}
\end{align*}
$$

where the function $c \mapsto U(c)$ is defined by (22). By substitution of (29) and (30) in (20) we have

$$
\begin{align*}
V\left(c_{1}, c_{2}\right)=\int_{0}^{1}\left|t-c_{1}\right|\left|t-c_{2}\right| \mathrm{d} t & -\left(\int_{0}^{1}\left|t-c_{1}\right| \mathrm{d} t\right)\left(\int_{0}^{1}\left|t-c_{2}\right| \mathrm{d} t\right) \tag{31}\\
& -12 U\left(c_{1}\right) U\left(c_{2}\right) .
\end{align*}
$$

If we take $f(x)=\left|x-c_{1}\right|$ and $g(x)=\left|x-c_{2}\right|$ with $a=0$ and $b=1$ in (1) we obtain that $V\left(c_{1}, c_{2}\right) \geqq 0$ because in this case the difference of left and right side in (1) equals V, where V is of the form (31). In such a way, in virtue of the theorem 1 we conclude that the conditions (27), (29) and (30) are satisfied.

From what we have said about we can formulate the following lemma.
Lemma 2. The conditions (12)-(20) are valid for a pair of functions p and q defined on $[0,1]$ if and only if the conditions (26), (27), (28), (29) and (30) are satisfied, where u, v, P, Q and V are defined by (24), (25) and (22) respectively.

Suppose further that the functions p and q satisfy the conditions (29) and (30). Then, first of all it is clear that we must have

$$
\begin{equation*}
p(t)=m q(t) \quad(0 \leqq t \leqq 1, m=\text { const }) . \tag{32}
\end{equation*}
$$

We will now consider the equation of the form

$$
\begin{equation*}
12 U(c) \int_{0}^{1} t p(t) \mathrm{d} t=\int_{0}^{1}|t-c| p(t) \mathrm{d} t \tag{33}
\end{equation*}
$$

where U is given by (22). We will also suppose that the function $t \mapsto p(t)$ is continuous on the segment [0,1$]$. It can be directly verified that

$$
\begin{equation*}
\int_{0}^{1}|t-c| p(t) \mathrm{d} t=c \int_{0}^{c} p(t) \mathrm{d} t-\int_{0}^{c} t p(t) \mathrm{d} t+\int_{c}^{1} t p(t) \mathrm{d} t-c \int_{c}^{1} p(t) \mathrm{d} t . \tag{34}
\end{equation*}
$$

By differentiation of the equality (33) with application of (34) we have that p must take the form

$$
p(t)=6(2 t-1) P
$$

where P is given by (25). Accordingly, the functions p and q must be of the following form

$$
\begin{equation*}
p(t)=k_{1}(2 t-1), \quad q(t)=k_{2}(2 t-1) \quad(0 \leqq t \leqq 1) . \tag{35}
\end{equation*}
$$

So, in virtue of the above lemma 2 we find that the following lemma is valid.
Lemma 3. Let us suppose that the functions p and q are continuous on the segment $[0,1]$. Then the functions p and q satisfy the conditions (12)-(20) if and only if these functions are of the form (35) where the real constants are arbitrary chosen such that $k_{i} \neq 0(i=1,2)$ and where we have

$$
\begin{equation*}
K=\frac{3}{k_{1} k_{2}} . \tag{36}
\end{equation*}
$$

On the basis of the above given results it can be directly conclude that the following theorem is valid.

Theorem 3. Suppose that the functions $t \mapsto p(t)$ and $t \mapsto q(t)$ are continuous on $[0,1]$. Then the inequality of the form

$$
\begin{align*}
& \int_{0}^{1} f(x) g(x) \mathrm{d} x-\left(\int_{0}^{1} f(x) \mathrm{d} x\right)\left(\int_{0}^{1} g(x) \mathrm{d} x\right) \tag{37}\\
& \quad \geqq K\left(\int_{0}^{1} p(x) f(x) \mathrm{d} x\right)\left(\int_{0}^{1} q(x) g(x) \mathrm{d} x\right)
\end{align*}
$$

holds for every pair of convex functions f and g if and only if these functions p and q are of the form (35) where the real constants $k_{1} \neq 0$ and $k_{2} \neq 0$ are arbitrary and where the constant K is given by (36). In other words, for every pair of convex functions f and g the inequality (37) holds true if and only if the same inequality is of the form

$$
\begin{align*}
\int_{0}^{1} f(x) g(x) \mathrm{d} x & -\left(\int_{0}^{1} f(x) \mathrm{d} x\right)\left(\int_{0}^{1} g(x) \mathrm{d} x\right) \tag{38}\\
& \geqq 3\left(\int_{0}^{1}(2 x-1) f(x) \mathrm{d} x\right)\left(\int_{0}^{1}(2 x-1) g(x) \mathrm{d} x\right)
\end{align*}
$$

The inequality (38) reduces to the result of A. Lupaş (1) by the substitution $x=\frac{t-a}{b-a}$. The supposition of continuity of the above functions p and q can be weakened, but it is not of the essential importance for theorem 3.

REFERENCES

1. A. Lupas: An integral inequality for convex functions. These Publications № 381 - № 409 (1972), 17-19.
2. P. M. Vasić, I. B. Lacković: Notes on convex functions II: On continuous linear operators defined on a cone of convex functions. These Publications №602- $\AA^{6} 633$ (1978), 53-59.
