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635. SOME EXTREMAL PROPERTIES OF ORTHOGONAL
POLYNOMIALS

Branko D. Rakovich and Petar M. Vasic

ABSTRACT..Using a partic:ular way of normalizing the orthogonal polynomials,
which is most commonly encountered in the synthesis of filtering networks in
communication and electronic engineering, two theorems concerning the extremal
properties of orthogonal polynomials are first proved. The results are then applied
to find the minimum value and the minimizing function for various definite in-
tegrals involving weight fuctions of classical orthogonal polynomials.

1. Introduction. Orthogonal polynomials are of considerable importance in
many branches of. science and engineering since they represent an indispensable
analytical tool for solving various approximation problems. In particular, the
approximation problem in the synthesis of electric filters, that the essential
parts of many systems in electronics and communication engineering, consists
of finding a physical realizable rational function of frequency that shall meet
a prescribed set of specifications with regard to its amplitude and/or phase
characteristics. Also, if the network is synthesized for use in pulse transmission
systems additional contraints may be imposed on the shape of the time domain
responses of the network since, for example, overshoot is undesirable and must
be kept to within a prescribed value. Although the criterion for best appro-
ximation largely depends on the intended application the lest-mean square error
norm is often employed and this accounts for widespread use of all type of classical
and some other classes of orthogonal polynomials in filter synthesis.

In many instances the filter function takes the form of a reciprocal of a
polynomial the amplitude of which is required to approximate zero in the
useful frequency interval and to deviate as much as possible from zero in the
rest of the frequency band. If the criterion for best approximation is stated in
terms of a least-mean square norm the minimum of the amplitude squared
function integrated over the useful band in association with a suitable chosen
weight function leads to the minimization of the insertion power loss in the
useful band. This, from the physical point of view, represents a well defined
design objective. In low-pass filters the useful band is defined as the frequency
interval between zero and the frequency at which the characteristic function of
the filter reaches the value of 1. Thus, in order to find the minimizing function
and the minimum value of the error integral the filter function is first expanded
into a series of orthogonal polynomials, and, by a simple frequency transfor-
mation, the useful band is made to coincide with the orthogonality interval of
the orthogonal polynomials. Then the minimization of the error integral can
be performed by standard method using the orthogonality relations for ortho-
gonal polynomials. This process is time consuming and cannot be solved in
each specific case, even for filtering functions of lower order, without resorting
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to tedious numerical computation using a digital computer. However, the closed
form solution of this problem can be made possible by the use of some extre-
mal properties of orthogonal polynomials that will be proved in the following
sections. In addition, the application of the main result will be shown to include
as special cases the minimum values of some definite integrals recently obtained
by MORDELL[2], [3].

2. Preliminaires. Let x ~ w (x) be a nonnegative function on the interval
[a, b] such that

b

Jw(x) x' dx
a

exists for r ~ 0 and consider the definite integral of the form

b

In= Jw(x)(bo+b1x+
'"

+bnxn)2dx.(2.1)
a

The problem to be solved is to determine the polynomial x ~ In (x) of
order n which minimizes the integral (2.1) under the constraint that In(P) = 1
for any given real number p. Since the integrand is nonnegative for any value
of xE[a, b] such a minimum value does exist.

If Qo' QI' Q2' '"
is a set of orthogonal polynomials associated with

tbe weight function x ~ w (x) on [a, b], the polynomial In can be expanded
into a finite series of x ~ Qi (x) so that

(2.2) In=! W(X)ct aiQi(X)fdX.

Using standard minimization technique [5] and starting from

(2.3)

where ~ is the Lagrangian multiplier, we have
b

dtp
=2 Jw (x) ai Qj (X)2 dx + ~ Qj(p)= 0,

da;
a

(2.4)
n

L aj Q; (p)= 1.
;=0

Denoting by

(2.5)
b

hj= Jw(x) Q; (X)2 dx
a

we easily find

(2.6)



Some extremal properties of orthogonal polynomials 27

so that the minimum value M of the integral (2.1) under the aforementioned
constraint is

(2.7) 1
M=----.

i Q;(p)2

;=0 h;

3. Main results.

Theorem 1. If c is finite and c ~ a or c ~ b, the integral

(3.1)
b

In = J w (x)fn (X)2 dx,
a

where fn is any real polynomial of degree n ~uch that fn (c) = 1, reaches its
minimum value if and only if fo, fl' f2' .,. form a Jet of orthogonal polynomial
on [a, b] with respect to the weight function x~(x-c)w(x) for c~a, and with
respect to the weight function x ~ (c - x) w (x) for c ~ b.

Proof. Suppose c (~a) is finite. From (2.2) and (2.6) the polynomial fn
that minimizes the definite integral (2.1), subject to the condition fn (c) = I, is

(3.2) fn (x) =
(Jo

Q)~C)2
r1;t

Q;h~C)2Q; (x).

But, from the CHRISTOFFEL-DARBOUXtheorem [4, p. 42], it follows that

(3.3) i Q;(c)Q;(x)- kn Qn(c) Qn+,(x)-Qn+t (c) Qn(x)
,

;=0 h; kn+l hn x-c

where kn is the coefficient of xn in x ~ Qn(x), so that the minimizing poly-
nomial takes the form

(3.4) fn (x) = KQn (c) Qn+t (X)-Qn+l (c) Qn (x)
(K = const).

x-c

Now we employ the CHRISTOFFELformula [4, p. 28] stating that if Qo' QI'
Q2' ... form a set of orthogonal polynomials associated with the weight
function w on [a, b], then the polynomials Ro, Rp R2' ..., where

(3.5) Rn(x)=KQn
(c)Qn+l(x)-Qn+t(c) Qn(x)

(n=O, 1,2, ...)
x-c

are orthogonal on the same segment [a, b] in respect of the weight function
x ~ (x - c) w (x). This evidently completes the proof of Theorem I for c ~ a.
A similar result holds if c(~b) is finite.

An immediate consequence of Theorem I is the following, more general,
result:

Theorem 2. Let g be an increasing function on [a, b] and w a nonnegative weight
function on the same interval such that the integral

b

J w (x) g (x)' dx (r ~ 0)
a
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exists; Then the sequence offunctions Xf-+fo (g(x»), Xf-+fl (g(x»), Xf-+J; (g (x»,
'"that minimizes the integrals .

b

I" = Jw (x)f" (g (x»)z dx(3.6) (n = O. 1, 2 . . .)
a

where f" is a real polynomial of degree n, forms an orthogonal system on [a, c]
associated with the weight function x f-+(g (x) - c) w (x) for c;;i,g (a), or associated

with Xf-+(c-g(x»)w(x) for c~g(b).

Proof. Substituting g (x) = t in (3.6) we have

(3.7)

g (b)

In = J p (t)fn (t)Z dt
g(a)

(n=O, 1,2, .. .),

where

P(t)=W(g-I(I» .
g' (g- I (I»

According to Theorem 1, the functions that minimize (3.6) form an
orthogonal system on [g (a), g (b)] in respect of t f-+ (t - c) P (t) for c;;i,g (a), i.e.,

(3.8)

(3.9)

g(b)

J (t-c)p(t)fj(t)fk(t)dt=O
g(a)

(j, k = 0, 1, 2, ...; I=I=k).

Now comming back to the old variable x, t = g (x), we get

b

(3.10) J(g(x)-c) W(x)Jj (g (X»)fk(g (x») dx=O (j, k-O, 1,2, .. .;j=l=k),
a

and this completes the proof of Theorem 2.

4. Applications. If the polynomials Q; (i = 0, 1, 2, . ..) are orthogonal on
[a, b] in respect of w, then from Theorem 1, we have for c ~ b,

(4.1)
b

minIn= JW(X) (i Qj(c)M
Qi(X» )

2
dx

;=0 hia

b

=JW (X) (Rn (X»)
2

dx,
Rn (c)

a

whereRo' R1, Rz, ... are the polynomials orthogonal with respect to xf-+(c-x)w(x)
on [a, b]. Since for any given nonnegative weight function wand any prescribed
segment [a, b] there is only one set of orthogonal polynomials which are determined
to within a constant multiplier, it follows that

(4.2) i Qj(c)M Q;(x)=Rn(X),

;=0 h; Rn (c)
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and by comparing the coefficients bf x", we find

h"k~
M= Q'

Q" (c)
R"

(c)
k"

(4.3)

where k~ and k~ are the coefficients of x" in Qn and R" respectively. Hence,
from (4.2) and (4.3)

"
Q kR

R" (x) = 2: ~ ~ iiQj (x).
j=oQ,,(c) hj

k"

Special cases. 10 Suppose In (x) = ao + al X + . . .+ ar.x" is a real nth order
polynomial such that

I"
(I) = 1, w (x) = (1- x)'" (1 + x)~ and a = - 1, b = I, then

substituting in (4.1)

(4.4)

(4.5)

Q,,(I) =p:'~ (1) = (:IX), R" (1) =p~+I.~ (1) = c+:+ 1),

k~=2-"Cn+nlX+~), k~=2-"Cn+IX:~+I),

whhile IX, ~> - 1, and

(4.6) h =
2"'+I>+lr(n+IX+I)r(n+~+1)

" (2n+IX+~+I)n!r(n+IX+~+I)'

while P:' ~ is the JACOBIpolynomial, we obtain

(4.7)
1

min J(1 - x)'" (1 +x)~ (ao + al x+ . . . + a"x")2 dx
-I

=
2"'+~+ln!r(lX+l)r(IX+2)r(n+~+I)

r (n + IX+ 2) r (n + IX+ ~ + 2)

Also, from (4.4) the following important identity for the JACOBIpoly-
nomials [4J is recovered

i (2i+IX+~+I)r(i+IX+~+I~Pf'~(x)= r(n+IX+~+2) p~+I.~(X).

i~O r(i+~+J) r(n+~+I)
(4.8)

From (4.7) some known results regarding the minimum values of some
classes of definite integrals immediately follows. Thus, for example, if IX= ~= 0,
we have

(4.9)
1

J(ao+alx+... +a"x")2dx~~. (n+ 1)2
-1
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The last result is obtained for hi (I) = I but it still holds good if the
polynomial In reaches the value of I at any point in the interval [-I, I]. To
prove this let In(£-) = I (-I~c~l) and substituting 2x=(c-l)t+(c+I),
we have

(4.10)
1 I

I In (X)2 dx =
I;C IIn (C~1 t+ c; If dt.

e -1

If In is a polynomial of degree n, so is the polynomial

I' (C-J C+l )gn(X)=Jn 2 x+2 .

Since In (c)=gn (1)= I, we have from (4.9) and (4.10)

(4.11 )

This result is due to F. BOWMANfor c = 0 (see MORDELL[2]). In a similar
way we find

.

(4.12)
e

I l+c
(ao+a1x+ ... +anxn)2dx;s-,

(n + 1)2
-1

so that from (4.11) and (4.12) it follows imediately that if a real polynomial
In (x) = ao + a1 X + . . . + an xn reaches the value of I anywhere on the segment
[- 1, I], then

(4.13)
1

I (aO+alX+ . . . +anxn)2dx;S~.(n+ 1)2
-1

Except for an obvious error, the last relation has been obtained by BERNSTEIN
[1, p. 50].

2° In the design of electric filters the polynomial In is costrained to be an
even function of frequency and if, in addition, a monotonic magnitude response
is required, the error integral has the form

1

I = J (1 -
X2)p - q x2q - 1 (ao + a) X2 + . . . + an x2n)2 dx

o
(p-q> -I, q>O).(4.14)

Again the minimizing function x ~ In (X2) and the minimum value of the
integral are called for subject to the condition In (1) = 1.

Since
1

J(l-y)P-q}.q-l Gj(p, q, y)Gdp, q, y)dy=O
o

(j, k=O, 1,2,...; j=j=k)(4.15)

where G" is the shifted JACOBIpolynomial defined by

Gn(p, q, y)=
r (n+q) i (- I)' (n ) r (2n+p-r) yn-r,

r(2n+p)
r=O r r(n+q-r)

(4. 16)
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we find, by substituting y = X2 in (4.16),

I
(4.17) 2 J(I_X2)P-q x2q-1 Gj(p, q, X2)Gk(p, q, x2)dx= 0U, k = 0, 1,2,.., ;j=l=k),

o

Also, from Theorem 2, the polynomial x H--Rn (X2) that minimizes (4.17)
is associated with the weight function x H--(1- x2) W(x) -=(1- x2)P-q+ I x2q-l so
that

(4.18)

Since k~= I, k~= I,

(4,19) G ( 1) =
r(n+p)r(n+p-q+l)

n P, q, ,. r(2n+p)r(p-q+l)

h
=-.!.n!r(n+q)r(n+p)r(n+p-q+l)

n
2 (2n+p) r (2n+p)'

(4.20)

we get from (4.3) and (4.14)

(4.21)
I

min J (1- X2)p-q x2q-l (ao + al x2 + . . . + an x2n)2 dx
o

=
n! r (n + q) r(p-q + I) r(p-q + 2)

2 r(n+p+ I) r(n+p-q+2)

and from (4.4)

(4.22) i ~,!~t+~:gj+P+~~Gi(P' q, x)=Gn(p+ I, q, x).
i=O I. I+q n+p+

If, instead of In (I) = I, the condition In (0) = I is imposed, we get

(4.23)
I

min J(1 - X2)p-q x2q-l (I + al X2 + . . . + an x2n)2 dx
o

and

=
n! r (n+p-q+ 1)r(q) r (q+ I)

2 r (n+p+ 1) r (n+q+ I)

(4.24) ~ ( _I )n+inlr(lI+p-q+l)r(2i+p+I)G. ( X) =G ( + I + I X).
" r (

'
1) r (2 I) I P, q, n P , q ,

i~O I. I+p-q+ n+p+

3° Theorem I and 2 still hold if one of the integration limits is infinite.
For example, with w (x) = x'"e-x, a = 0, b = + ex), we have from (4.3)

+00
. J 2 r (IX + I)

mm

0

x"'e-X(l +al x+ . . . +anxn) dx=
(n+:-1'

For IX= 0 this result, which find applications in the design of pulse
forming networks, was proved MORDELL[2].

(4.25)
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Also from (4.4) the well known formula for the LAGUERREpolynomi-
als is obtained

(4.26)
n

L Lf(x)=L~+t (x).
i~O
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