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PART ll: ON SOME CONVEX SEQUENCES CONNECTED
WITH N. OZEKI'S RESULTS

This is a research-expository paper with certain additions and contributions to
the treated matter. In the paper some priorities are also established and the
results of OZEKI are critically exposed.

O. Introduction. N. OZEKIpublished seven papers ([1]-[7]) on matters related to convex
sequences and their inequalities. Excepting those numbered [1] and [2], which were reviewed
rather incompletely', the others were not even reported in the Mathematical Reviews. What
is more, to the best of our knowledge, both the Zentralblatt fur Mathematik and the
Referativnyi Zurnal Matematika seldom report on what appears in the Japanese periodical
called Journal of College of Arts and Sciences, Chiba University (which is where all OZEKI'S
papers have been printed). We required a lot of time and considerable effort, trying to get
hold of OZEKI'Spapers. Unfortunately, three of the papers ([1], [3] and [4]) were printed in
Japanese, which meant extra difficulty for us to overcome.

In OZEKI'Spapers there are some attractive new results but they contain several actual
mistakes which have had to be resolved first, before we could arrive at the theorems he has
established. OZEKIprovides an extremely small number of references, and it appears that
his ideas seldom stem from the achievements described in mathematical literature. OZEKI
arrived yet again at some of the known results, creating interesting and simple methods for
proving them. In some instances he arrived at conclusions lees plausible than those already
established. Reading OZEKI'Spapers involves a certain amount of strain on account of the
misprints in which they abound.

It is almost an axiom that results which are not well exposed in at least one review
journal are almost lost for mathematics. This is even more so if a paper is not annoted at
all in those journals and that is not a rare event. The following exposition attempts to review
OZEKI'S results critically and also to fill in the gaps, and at the same time provides extracts
from other mathematicians' papers which delved in matters related to convex sequences. It
is thus made possible for those from the mathematical circuit to acquaint themselves with
OZEKI'Sachievements.

1. Some results for convex sequences

In OZEKI'S papers one of the basic concepts is. the concept of a convex
sequence. That is why, at the beginning of this exposition, we shall give seve-
ral definitions which will be used troughout this paper.

Let (an) (n = 1, 2, ...) be a real sequence. The k-th order difference of
sequence (aJ is defined by

tJ.0an=an, tJ.kan= tJ.k-l an+l- tJ.k-l an

Instead of tJ.l we shall write tJ..

(k=1,2, ...).

. Presented in 1977 by P. R. BEESACK,P. S. BULLENand A. LupAS., See: Mathematical Reviews 34 (1967), review 6009 by S. IzUMI and 39 (1970), review
by U. C. GUUA.
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The following definition introduce the notion of a convex sequence of
order k (k = 0, 1, .. .).

Definition 1. A sequence (a,,) is said to be convex of ordes k if I::,.kan ~ 0 for
all nEN. Particularly, a convex sequence of order k=2 is said to be convex.

On the basis of def. 1, the following definition can be introduced.

Definition 2. A positive sequence (a,,) is said to be logarithmically convex of
order k (k = 0, 1, ...) if the sequence (log an) is convex of order k.

One of the first results of OZEKJwhich we encountered, relevant to convex
sequences, is the following theorem proved in [1] (see also [8], p. 202).

Theorem 1. Let (a,,) be a real sequence and let the seql}ences (An) and (Bn) be
defined by

(1) (n=I,2, ...).

Then, if the sequence (an) is convex, the following holds

(i) (n = 2, 3, .. .),

(ii) sequence(A,,) is convex, i.e. 1::,.2An ~ 0 (n = 1, 2, ...) is valid
In the above mentioned paper [1] OZEKI gave a proof of this theorem,

by elementary methods. A more general theorem is proved below (see theorem
4) and for this reason the proof of theorem 1 is omitted here. Let us mention
only that the proof of statement (ii) follows directly by repeated application

of the inequality quoted under (i) and the fact that B2 = 2- 1::,.2 a1.
3

An assertion similar to that of (ii), theorem 1, is valid for logarithmi-
cally convex sequences, i.e. OZEKI in [1] proved the following theorem:

Theorem 2. If the sequence (a,,) is logarithmically convex, then the sequence
(A,,), defined by (1), i.!>also logarithmically convex, i.e. the implication

(n = 1, 2, .. .)
is valid.

Later on, we shall give a more general theorem together with its proof
(see theorem 7), so that the proof of theorem 2 is omitted.

As stated by OZEKI himself in [1] these two theorems represent answers
to problems set by Ryo HIROKAWA.

Summarizing these results in [1] OZEKI quotes the following list of im-
plications:

(an+l)2;;::;anan+2 =>

U
(An+l)2;;::;AnAn+2 =>

an+2- 2 an+l +an ~ 0,

U
An+2-2An+l+An~0,

where the quoted inequalities hold for evevry nEN and the sequence (A,,) is
defined by (1). Let us mention that implication 1::,.2 log an ~ 0 => 1::,.2an ~ 0 was
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already proved in 1928 by MONTEL [9], where, among other results, a neces-
sary and sufficient condition for the logarithmic convexity of a real sequence
was given (see also [8], p. 19, as well as the literature related to it).

Naturally, a question arises whether assertion (ii) of theorem 1 could be
extended to to the class of convex sequences of order k ~ 3. In paper [6] an
answer to that question is provided in the form of the following theorem (see
theorem 3, p. 3, in [6]).

Theorem 3. Let (an) be a positive ~equence. Then from the k-th order convexity
of sequence (an)' follow'l the k-th order convexity of the sequence (AJ, where An
is defined by (1).

Prior to proceeding to the proof of this theorem, we have to make se-
veral remarks. In the proof quoted in [6] the assumption of the positivity of
the sequence (aJ was not used, which means that theorem 3 holds for arbit-
rary real sequences. On the other hand, while the basic idea of the proof is
carried out with a series of errors. Some of these errors are removed when
proving theorem 3 in [7], though we must state that this is not explicitly
stressed.

Retaining OZEKI'S basic idea, we shall give a shorter version of the proof
of theorem 3.

(2)

Proof. It is easily verified that equality

(n + k) 6.k An = (n - !l6.k An-l + 6.k an (n = 2, 3, .. .)

holds (OZEKI'S correct proof of (2), which is somewhat longer, is given in
lemma 2, on page 3 of [7]). By a straight forward calculation we find

6.k Al = ~ 6.k a1.
k+l

By a successive applications of formula (2) for n = 2, 3, . .. and by (3), we
find that inequality

(3)

(n+k ) 6.k A ~~ 6.k ~on - a1 -k n
(n=l, 2, ...)

is valid, which completes the proof of theorem 3. D
The. proof of equality (2) given in [6] is not correct. On the other hand,

the same equality is correctly proved in [7], but this second proof of OZEKI
is complicated. By applying the well known formula (see, for example, [10],
pp. 7-8) .

1\ k b - ~ (k ) 1\; 1\ k-j b1.1 an n- L., . 1.1 anl.1 n+;
;=0 I

n
to equality nAn = 2: Ok (which directly follows from (1)), (2) follows directly.

k=1
Starting from (ii) in theorem 1, VASIC, KECKIC, LACKOVICand MITROVIC

[11] proved that the statement of theorem 3 holds without assumption on the
positivity of sequence (a/l)' The proof glVen in [11] is considerably shorter then



6 D. S. Mitrinovic, I. B. Lackovic and M. S. Stankovic

OZEKI'S proof given in [6]. OZEKI could not know the result obtained in [11],
because this paper, communicated in 1970, was published in 1972.

The results obtained in theorems 1, 2 and 3 are generalized in another
direction, too, in papers [2], [11] and [12].

Let us consider a triangular matrix of real numbers (Pn,j) (where
j = 0, 1, . . . ,n; n = 0, 1,...). Let us define the sequence (ern), for a given
sequence (an) by

n
ern= L Pn,n-jaj'

j=O

In paper [2] OZEKI obtained the conditions on a triangular matrix (Pn,j)'
implying that for each convex sequence (an) the sequence (ern) defined by (4)
is also convex. This result of OZEKI reads:

(4)

Theorem 4. A necessary and sufficient condition that the implication

~2an~0 => ~2ern~0

is valid, for every sequence (an), where the sequence (ern) is given by (4), is that
the following conditions, for every n,

(5)

(6)

(7)

(8)

(9)

hold, where

(10)

Otn-l, n-l - 2 Otn,n + Otn
+ 1. n+ 1 = 0,

~n-l.n-2 - 2 ~n.n-l + ~n+l,n= 0,

~n-l,n-k-l - 2~n,n-k + ~n+!.n--k+l ~ ° (k= 2,.. . , n - 1),

~n+l'! -2~n,o~0,

~n + I , 0 ~
°

(11)

k

Otn,k = L Pn,j'
j=O

k

~n, k = L Otn, j'
j=O

In paper [2] OZEKI gave only the proof of the sufficiency of the
conditions (5) - (9). However, we shall give a proof that the conditions
(5) - (9) are also necessary.

Proof. (i) Conditions (5) - (9) are sufficient. Let us define the sequence
(ek) (k = 0, 1,...) in the following manner

(12) (k=I,2,...).

On the basis of the assumption that the sequence (an) is convex we find
that ek ~

°
(k = 2, 3, . . ,), while eo and el can be of an arbitrary sign. On the

basis of (12) we have

(13) (n=O, 1,.. .).
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n
Applying (4) and (13) we get an= 2: IXn.n-jeJ' which upon evident transfor-

j=O
mations gives

(14) ~2 an-I.n-I = (IXn-l.n-1 - 2IXn.n+IXn+l.n+l)eo

n
+ ~ (~n-l.n-k-I-2~n.n-k+~n+l.n-k+l)ek

k=2

+ (~n+l.t - 2~n.o) ell + ~n+l.o el8+1'

From the above equality and conditions (5) - (9) it follows that ~2 an-I ~O.
Which proves that the (5) - (9) are sufficient.

(ii) Conditions (5) - (9) are necessary. Let us choose, first, the sequence (a,.)
defined by an= 1 (n = 0, 1,. . .). This sequence is convex and eo= 1, ek= 0
(k = 1, 2,.. .). Since, by assumption, for any convex sequence (a,.)the sequence (a,.)
defined by (4) is convex, too, we find on the basis of (14) that

(15)

Analogously, if we select an= - 1 (n = 0, 1,...) (this is also a convex sequence),
we get eo= - 1, ek = 0 (k = 1, 2, . ..) so that from the assumed implication on
the convexity of the sequences (an) and (a~), on the basis of (14) we have

(16)

On the grounds of (15) and (16) we infer that (5)
follows that (14) becomes

(17) ~2 an-I = (~n-l.n-2 - 2~n.n-l +~n+l.n)e1

is valid. From this it

n

+ 2: (~n-l.n-k-I + 2~n.n-k + ~n+l.n-k) ek
k=2

+ (~n+l.t - 2 ~n.o) en + ~n+l.o en+1'

,Now let us assume that ak=k(k=O, 1,...). Since~2ak~0, we have~2ak~0
Therefrom, since eo= ek= 0 (k = 2, 3,. ..) and el = 1, we get

(18) ~2 an-1= ~n-l,n-2 - 2 ~n.n-I+ ~nH.n~ O.
On the other hand, in the case when ak = - k (k = 0, 1, . . .), since eo= ek = 0
(k=2, 3,...) and el= -1, we find that

(19) ~2 an-I = - «(3n-1.~-2 - 2 (3n./I-1+ (3n+l.,.) ~ O.

From inequalities (18) and (19) we see that the condition (6) holds. In the
other words, equalities (14), i.e. (17), take the form

(20)
n-l

~2 an-1 = 2: «(3n-l. n-k-1 - 2 (3n.n-k + (3n+1. n-k+1) ek
k=2
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Now let us cboose sequences (a~) (j, k=O, 1, ...) so tbat

a~=O (O~k~j-l), a{=k-j+l (k";;;;,j).

For tbe j-th sequence we have, on the basis of (12),

e{=O (k¥j), eZ= 1.

Using tbe s<:<I~e~ce~a~) u= 2, . .. ,n + 1) . we find on the basis of (20) that

(~"-1. "-j-l - 2 ~", ,,-j+ ~"+1."-)+1 (2 ~j~n - 1),

Ll2
0'''-1 = 1 ~"+1' 1- 2 ~n. 0 (j = n),

,[3"+1.0 (j=n+l).

Since tbe sequences (a~) (2~h;;;n+l) are convex, then Ll20'''-1~0, so that
by (21) we get, in turn, conditions (7)-(9). This completes the proof of
~beorem 4.0

From OZEK}'Spaper [2] it cannot be seen why the proof that conditions
(5)-(9) are necessary, is omitted (part (ii) of the proof of theorem 4) because
tbe same.is not at all simpler tban the first part of the proof of theorem 4.
Otberwise tbis idea, p~ented in part (ii) is taken from [11] and [12]. In [11]
a transformation of a sequence (an) of the form .

(21)

(22)

"
L,PkQk

A = k=O

" "
2.Pk

k=O

(n-O, 1, .. .),

is considered, where Pk> 0 (k = 0, 1, . . .). Tbe following tbeorem was proved
for tbe sequences (an) and (A,,).

Theorem S. A necessary and sufficient condition that for every sequence (a,,) the
implication

(n=O, 1, ...)

is valid, where the sequence (A,,) is given by (22), is that the sequence (p,,) (of
positive weights p,,) is of the form

(23) (n = 2, 3, . . .),

where Po and PI are arbitrary positive numbers.
Let us observe tbat tbe sequence (A,,), given by (22), is of tbe form (4),

if the triangular matrix (p".j)is cbosen in sucb a way tbat
.

P,,-k
P". k = --.--

L,Pl
j-fl.

(k=O, 1,...,n; n=O, I, ...).
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Theorem 5 is a special case of theorem 4, namely each sequence (Pn) of the
form (23) satisfies conditions (5)-(9), where the sequences (ocn.j) and (~n.j) are
defined by (10) and (11). The sole advantage of theorem 5 with respect to
theorem 4 is that the weights (pJ in theorem 5 are explicitly obtained and
conditions (5)-(9) are quite complicated to verify. It is certainly made possi-

n

ble by an additional condition on matrix (Pn. j), which reads 2: Pn.k = 1, whe-
k=O

re Pn. k> O.

LACKOVIC and SIMIC [12] made the following generalization of theorem 5.

Theorem 6. A necessary and sufficient condition that the implication

(n=O, 1, ...)

is valid for every sequence (an) and sequence (AJ given by (22), is that the se-
quence (pJ, for n=r, r+ 1, ... , is of the form

(r 1)1P
n-2

Pn=
- . r-I n «k+I)(po+"'+Pr-2)+(r-I)Pr-I)'

n! (Po+ ... +Pr-Jn-r+1 k=r-2

(24)

where PO' . . . , Pr-l are arbitrary positive numbers and r ~ 2 is a fixed natural
number.

As stated by OZEKI himself in theorem 4 from [2], the following asser-
tions are immediate:

(a) If sequence (aJ is convex, then the sequence

ao+...+an(1 =--n
n+ 1

is also convex.

(b) If the sequence (aJ is convex, then the sequence 01 H5LDER'S means is
convex too. HOLDER'Smeans are defined by

t o.+...+a"H,,= ,
n+l

k k
k+1 H 0 + . . . + H"

H" = n+l
(k= I, 2, . ..).

(c) If the sequence (aJ is convex then the same property is possessed by the
sequence «(1J defined by

All the quoted particular cases are also consequences of theorem 5. In
paper [2] OZEKI gave some simple assertions for CESAROmeans ((1:) of the
sequence (aJ. In [11] the connection of these theorema with the sequences of
bounded variation is given.

In [2] OZEKIpresented (see theorem 2 from [2]) a theorem for logarith-
mically convex sequences analogous to theorem 4. Prior to proceeding to the
statement and the proof of this theorem we shall introduce some notations:
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Let the sequences (p,,) and (P,,) (n = 0, 1, ...) be strictly positive and let

(k=l, 2, ...).

For a given sequence (a,,) let the sequence (0',,) be defined by

(25) (n = 0, 1, . . .).

Theorem 7. Let us assume that the sequences (p,,) and (P,,) satisfy the conditions

(26)

(27)

(28)

(29)

Qo=O,

2Q">I>Q,, (n=l, 2, ...),

q,,;;;Q" (n = 1, 2, .. .),

(1- Q"-1 Q,,)2;;;4 q" (1- Q,,-I) (1- Q,,) (n = 1, 2, .. .).

Then, if a positive sequence (a,,) is logarithmically convex, the sequence (0',,), 0'"
being defined by (25), is also positive and logarithmically convex. In other words,
the Implication

is valid.

Proof. Let

(n = I, 2, ...)

(30) (n=O, I, .. .).

The sequence (/,,) is well defined by (30) and on the basis of that relation we
immediately have t,,> O. From the same relation it follows that

p"a,,= to tl . . . t"-1 (t,,- 1),

so that with respect to the inequality p" a"> 0 we get
assumed that a,,-la,,+I;;;a/, we have

(31) t >1 +
q"f"-I(t,,-J)2

"+1 = .
f,,(t"-I-l)

Using (25), the definition of the sequence (t,,) and relation (31) we have

t,,> 1. Since we have

= C (/,,+ I - t" Q,,)

;;;C(q"f"-I(t,,-1)2
+ I-t"Q,, )f,,(t"-I-l)

= CI «q" t"-I - Q" t"-1 + Q,,) t,,2 + (/"-1 - 1 - 2 q" t"-I) t" + q" t"-I)'
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where C ~ 0 and CI ~ O. Let us mention that we have introduced

C
CI= >01,,(1,,-1-])

the notation

(n> 1)

and furthermore let

(32) f(tJ = (q" t"-I - Q" t"-I + QJ t,,2+ (t"-I - I - 2 q" t"-I) t" + q" t"-I'
On the basis of (28) we see that q" t"-I - Q" t"-I + Q,,> O. The discriminant of
f(t),/ being given by (32), has the form

D=(t"-I-l) (t"-I (1-4q,,(1-Q,,»-I).

If D ~ 0 then it immediately follows that 0'''-1 0',,+1- 0'/ ~ O. Let us consider
the case D>O. Since t"-I> 1 we see that t"-I (1- 4 q,,(1- Q,,»> 1 and from

t"-I> I we find that I - 4 q" (1 - Q,,)> 0, i. e. the condition D> 0 implies

1
t"-I> .1-4q,,(1-Q,,)

The proof that in this case also 0',,-10',,+1- 0',,2~ 0 holds, will be
continued by induction. Let n = 1. We shall prove that 0'00'2- 0'/ ~ O. It is
directly verified that

0' 0' -0' 2=
(PoaO>' (_Q t2+(1-2Q )t+ l-Q +P2a2)o 2 I
POP2

I 1 1 poao

is valid, where the notation t =
PI al

> 0 was introduced. Since C =
(Poao>'

> 0,
~~ ~~

then we have

0'00'2 - 0'12 = C ((ql - QI) t2 + (1- 2 QI) t + (1 - QI) - ql t2 +
P2a2)poao

( P2(aoa2-at2) )= C (q I - Q I) t 2+ (l - 2 QI) t + I - Q I + 2poao

(33)

~C((ql - QI) t2+(1- 2 QI) t+ 1- QI)= Cfl (t)

(let US mention that this last relation is not proved correctly by OZEKI in [2]).
The discriminant of the polynomial It (t) is

Do= (1- 2 QI)2- 4(I-QI) (ql-QI)= 1- 4 ql (I - QI)'

Using conditions (26) and (29) for n = 1, we find that Do ~ 0, i. e. It (t) ~ O.
Thereby it is proved that 0'00'2- 0'/ ~ O.

Let us further suppose that
2

(34) 0'''-20',,-0',,-1 =C(t,,-Q"-I t"-I)~O,

where the positive quantity C was defined earlier. It is immediately verified
that

f(Q,,-1 t,,-I) = t"-I ((q,,- Q,,)Q"-12t"-12+ (Q"-I Q"+ 1- 2q,) Q"-I t"-I + (qn-Q"-I»)
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holds. The discriminant of the quadratic polynomial F(t) is

DI = (1- Qn-I Qn)2- 4 qn (1 - Qn) (1- Qn-I)

and on the basis of the assumption (29) we have DI ~ O. In other words, we
find that

I (Qn-I tn-I) ~ O.

We have assumed that D> 0, which means that equation I(t) = 0, where I
is defined by (32), has two distinct real roots ex and ~. Further we have

Q t -
01:+ [3

=
1 (2 Q ( - Q ) t Z

n-I n-I 2 2 « - Q ) Q) . n-I qn n n-I
qn n 'n- I + n

(35)

+ (2 Qn Qn-I + 1 - 2 qn) t"-I - 1) = Czfz (tn-I)'

where Cz is positive. For the so defined quadratic trinomial Iz (t) we have

(36) Iz (0) = - 1.

By a direct calculation we find that

(37)

where, on the basis of (27), 2 Qn> 1 and the quantity
the basis of (29) we have

4 qn (1- Qn) ~ (l-Qn-1 QJ2
l-Q,,_,

C3 is also positive. On

so that from (37) we get

(38) Iz C-4 q,,\l-Q)
~ C4(Q,,-I)Z (1 - Qn)Z~O,

where C4 is positive. On the basis of (33), (35), (36) and (38) we get

01:+[3
Qn-I t,H - - = Czfz (tn-I» O.2

From (34) it follows that t" ~ tn-l Qn-l' Hence on the basis of (35) and (39)
we get

(39)

O'n-l O'n+1 - O'"z = C11 (tn) ~ 0,

which completes the induction proof of OZEKI'S theorem 7.0
Let us note that theorem 2 is a special case of theorem 7. Namely, if

in theorem 7 we take Fn= I and PO=Pl = . .. =Pn= I for all n=O, 1,...,
then assumptions (26) - (29) are satisfied and from the logarithmic convexity
of sequence (an) the logarithmic convexity of sequence (An) follows, An being
given by (1).

If the sequence (a,,) (n = 0, I,...)
1

to prove that the sequence - an (n = 1,
n

is convex, where ao= 0, it is simple

2, . ..) is nondecreasing. Namely, from
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ao= 0 and !J..2ao~ 0 we find that
~

a2 ~ a1. On the other hand, since !J..2an-l ~

0, we get

so that the above assertion follows by induction. In a similar way if a posi-
tive sequence (aJ (n = 0, 1,...) (ao= 1) is logarithmically convex, then the
sequence Van (n = 1, 2, ...) is nondecreasing. This shows, for example, that
convexity of (an) is a stronger condition than monotony of the sequence

(: an) is. In references to the above we can raise a question whether this

weaker condition entails the analogous behaviour of arithmetic means defined
by (1). The answer to this problem is contained in the following two theorems
from [3].

Theorem 8. Let
be defined by

(40)

the sequence (bn) be nondecreasing and let the sequence (Bn)

Then

(i) (n+ l)bn~ 2Bn and (ii) Bn+l ~~.
n+2 n+l

Proof. (i) On the basis of (40) we have

(n+ I)Bn+l =nBn+(n+ 1)bn+l'
i.e.

(n + 2)bn+l - 2Bn+l = n (bn+l -
2Bn )~~«n + 1) bn- 2BJ.

n+l n+l

Since 3b2-2B2=b2-b1~0 assertion (i) follows from (41) by induction.
(ii) Since

(41)

(n+ 1)Bn+l-(n+2)Bn=(n+ l)bn+I-2.Bn~(n+ 1)bn-2Bn,

on the basis of (i), (ii) follows.

Theorem 9. Let the sequence (bn) be nondecrea/Jing and let

1 n

Bn=- L: b/ (bo=I).
n k~1

n-I n
Then VBn~VBn+l (n=2, 3,.. .), and particularly B2~~Bl is true.

2
Theorem 9 is proved (by induction) in a similar way to theorem 8.

Let us note that bn~ I stems from the assumptions of this theorem.
In the particular case, if we take that bl = . . . =bn = x> 0, by theorem 9

we see that the inequality

holds.
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2. Some results concerning the convolution of sequences

Let two sequences (an) and (bn) be given and let the sequence (cn)be defined by

(42)
n

cn= L ak bn-k'
k=O

The sequence (cn) is called the convolution of the sequences (an) and (bn).
Formula (42) gives the coefficients of the development

+i CkXk=Xk=
(y akxk )(Y bkXk ).

k~O k~O k~O

In many papers (see [14] - [19], as well as the references given in them) the
behaviour of sequence (42) was dealt with under different assumptions for
sequence (an) and (bn). Some of the quoted papers treat sequences defined by
means of (cn) given by (42).

OZEKI'S papers contain also a certain number of theorems relevant to
such combination of sequences (an) and (bn). So, for example, in paper [2] the
following assertion is proved.

Theorem 10. If a positive sequence (aJ (n = 0, I,. ..) is logarithmically convex,
then the sequence (O"n)(n=O, 1,.. .), where O"nis defined by

O"n= -~i (n )ak,
2 k=O k

(43)

is also logarithmically convex.
Together with sequece (43) we can consider the sequence (SJ, where

Sn=i (n )ak
k~O k

It is clear that the sequence (43) is logaritmically convex if and only if
sequence (44) has the same property. OZEKI'S proof, given [2], is based on
just such an idea. .

However, an even more general result was already known in 1949.
Namely, DAVENPORTand POLYAin [16J proved the following

Theorem 11. Let the sequence (wn) be defined by

(45) Wn=i (n )akbn-k'
k=O k

where the sequences (an) and (bn) are positive and logarithmically convex. Then
the sequence (wn) is also positive and logarithmically convex.

It is clear that (45), for a positive and logarithmically convex sequence
bll= 1 (n=O, 1, .. .), reduces to (44), i.e. OZEKI'Stheorem 9 is a special case
of theorem 11.

In [4] OZEKI considered a sequence related to convolution (42). Namely,
if (an) and (bn) are given sequences, let the sequence (en) be defined by

(44) (n=O,I,...).

(46) (n=O, I, .. .).



Addenda to the monograph "Analytic. inequalities" n IS

In connection with this sequence the following theorems were proved in [4].

Theorem 12. Let positive sequences (a,,) and (b,,) be convex and let us suppose
that 01;;;;00 and b1;;;;bo' Then the sequence (c,,) defined by (46) is convex. In
other words, if

(47)

then

(i = 1, 2, . . .),

~2CH ~O (i= I, 2, . . .).
The following theorem concerns logarithmically convex sequences.

Theorem 13. If positive sequences (a,,) and (b,,) satisfy the conditions

b;-lbi+1~b/ (i=I,2,...)

then the sequence (cn) defined by (46) also satisfies the condition

(48) (i = 1, 2, . . .).

It is simple to prove that sequences (a,,) and (bn), satisfying the assum-
ptions of theorem 12, are positive and nondecreasing. This follows from (47)
by induction. The proof of theorem 12 given in [4] is very similar to the
proof of theorem 7 and we shall not quote it here.

. By a direct calculation we can verify that for every sequence (c,,) equality

,12(n+ I)c,,=(n+ 1)~2cn+2~cn+1

is valid. This implies that jf the 'sequences (a,,) and (b,,) satisfy the conditions
of theorem 12, then not only the sequence (cn), given by (46), is convex, but
even convolution (42) of sequences (a,,) and (b;,) is convex. The related prob-
lems were studied in [17].

The proof of theorem 13 given in [4] is also very similar to that of
theorem 7 so that this proof will not be quoted here. In [18] it was noticed
that if positive sequences (a,,) and (bn) are logarithmically convex, then their
convolution (42) needs not, in general, be logarithmically convex. This is not
contrary to OZEKI'S theorem 13. The sequence (c,,), defined by (46), can be

written in the form c,,=~ C", where C" is given by (42). By this substitution
n+1

inequality (48) becomes

(;+1)2 - - >-~ c.
I C' +I -c.; (i + 2) ,- I - I (i = 1, 2, . . .),

which is a weaker condition than that of the logarithmic convexity. On the
other hand if positive sequences (a,,) and (bn) are logarithmically concave, then
their convolution (cn) defined by (42) is also logarithmically concave. In a
particular case this result was obtained for the first time by KALUZA r14J in
1928. Somewhat later, in 1933, KARAMATA[15] again arrived at the same
result. Later on the same question was dealt with in papers [16] - [19].

From the above mentioned results for the logarithmically concave sequences
we get the following assertion for the sequence (c,,) defined by (46): If positive
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sequences (a,,) and (bn) are logarithmically concave, then the sequence (cn) defined
by (46) satisfies the inequality

i{i -f-2) 2c. c. 5.C.
{i+1)2 ,-I .+1- , (i = I, 2, .. .).

This condition is now weaker then that of the logarithmic concavity of
sequence (cn).

From the foregoing we infer that theorem 13 cannot be compared with
the theorem on the logarithmic concavity of the convolution of positive and
logarithmically concave sequences.

3. On the coefficients of Taylor's expansions

In this section we shall present several of OZEKI'S results related to
functions given in the form of power series with coefficients which are convex
or logarithmically convex.

The following definition, introducing a relation among real functions, will
considerably shorten this exposition.

+00 +00
Definition 3. Let w. consider two formal power series ~ akxk and ~ bkxk.

k=O k=O
The:,e jeries are said to be in relation ~, which is denoted by

+00 +00

~ akxk~ ~ bkxk,
k=O k=O

if the condition ak~bk(k=O, 1, ...) is fulfilled.
In [3] OZEKI proved the following results related to the relation».

+00
Theorem 14. Let us ajsume that f(x) = Z PkXk. If the positive sequence

k=O
(Pk) (k = 0, I, ...) is logatithmically convex, then

j(k-l){X) /(k+l){X)-:;3 (
/(k){X)

)
2

(k-l)! (k+ I)! ~ k!

where the derivath'es pm) are taken in the formal sense.
The proof of this theorem, as stated in [3], follows immediately from the

calculation of the coefficient of xn, in the difference of the left and the right
sides of (49).

OZEKI [6] also studied some properties of the relation ~ for polynomials.
Namely, the following very simple assertions were proved in [6]:
(i) Let P (x), Q (x) and R (x) be polynomials with positive coefficients and of
equal degree n. Then

(49) (k = 1, 2, .. .),

a)

b)

c)

P (x) ~P (x),

P (x)~Q (x) 1\ Q (x)~P(x)

P (x)~Q (x) 1\ Q (x)~R (x)

::;> P (x) = Q (x),

::;> P (x) ~R (x).
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(ii) If Pn(x), Qn(x), Pm(x), Qm(x) are ~I~omials of degree nand m repecti.
vely, with positive coefficients Pi' qj' Pj' qj (i=O, 1, ..., n; j=O, 1, ..., m)
for which

holds, then

(iii) If P (x) and Q (x) are arbitrary polynomials of equal degree, then from
the condition P (x»Q (x) follows the condition

x x

JP(x)dx> JQ(x)dx.
o 0

The proofs of these assertions are simple.
Using the properties of relation >, OZEKI [6] proved

Theorem 15. Let (a), (bj) and (Cj) be sequences of real numbers for which the
conditions

(50) (bo= I),

(51)
n n

(n)D(x+a2i)=j~ ; c/xn-t

are valid. Then, if aj> 0 and ajai+2 - at+12 ~ 0 (i= 1, 2,
"

.), we have
bt~c/(i= 1, ..., n).

We will give a somewhat shortened version of OZEKI'Sproof.

Proof. On the basis of the assumptions of theorem 15, we can see that

(52) (j>i)

is true, which is obtained directly by comparing polynomial coefficients on the
left and right sides of (52).

Further, let us define polynomials P2j and P2j+l by

t /
P2t(x) = n (x+a2.l)' P2j+l (x) = n (x+a21+1)'

j=l 1=0

By induction, on the basis of (52), and using the transitivity of the relation )0,
we get

(53) P2n-l (x) >(x + aJ P2n-2 (x) (n=2, 3,...)

From the logarithmic convexity of the sequence (aJ, by a direct ca'culation,
we see that

(54) (n= 1,2,...)

2 publikacije Elektrotehnii!ko8 (akulteta
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holds. If P(X)=P21/-l (x)+n (x + a2n+I)P2n-2(x)- (n + I)P2n(x), where P2/ and P2j+1
are the polynomials defined above, on the basis of transitivity of the relation ~
and (54) we get that P(x)~O i.e.

(55) P2n-1 (x) + n (x + a2n+I)P2n-2 (x)- (n + I)P2n (x)~O

is true. By induction, on the basis of (53) and (55), it could be shown that,
under the assumption of theorem 15,

(56) (ft(x+a2j+I))'~(n+l)D(x+a2;)

holds. Further, using (50), (51) and (56), on the basis of the property (iii) of
relation ~, the assertion of theorem 15 follows.

OZEKI [5] also gave some theoremes related to coefficients of functions
given in the form of a prower series. Namely in [5] the following result was
proved. -

Theorem 16. Let us asJume that the sequence (qn) (n = 1, 2, . .) is defined by
the/of/owing formal equality

(57) 1 + +i qk xk = (
1- Y Pk xk

)

-l
,

k=l k=l
. .

where the sequence (Pn) (n = 1, 2, . ..) is given. In other word!!., let

(58)
n-l

ql = PI' qn= Pn+ L: Pk qn-k
k=!

(n=2, 3,.. .);

then, if the positive sequence (pJ is logarithmically convex, we have

(59) (n = 1, 2, . . .).

The proof of this theorem, given in [5] by OZEKI, is based on the
following theorem given in the same paper.

Theorem 17. Let D~(n= 1,2,...) denote the determinant of order n with
entries aj}' where

a/j;;;;O(j;;;;i-l), a;}= -1 (j=i-2), aj}=O (j<i-2) (i,j= 1,..., n).

Then, if

l

ap;

aqj
l:;;;,i:;;;'j:;;;'n),

then (-1)n+IDn;;;;O (n=I,2,...).

The proof of this theorem is carried out by induction in [5].
We wish to mention that the positivity of the coefficients qn' under the

quoted ~ssumptions of theorem 16, was proved already in 1933 in [15}.
Similar, 'but much more general results were obtained in [17].

According to the monograph [20], p. 164, SCHUR proved the following
assertion.
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(60)

If ai, . . . , an are positive real numbers and if :;equencee (qn) is defined by

1
-1 +~ (n+i-l ) j

n - + L., . qix,

n (l-xai) i=1 I

i=1

then the sequence (qn) i:; logarithmically convex.

OZEKI in [5], parallel with the above expansion, considered the expansion

D
(l-xai)=I+JI (-I)i(;)Pixi

and proved the following result:

Theorem 18. If real numbers a1,..., an are positive, then the sequence (pJ
defined by the expansion (61) is logarithmically convex.

The very simple proof of theorem 18 is based by OZEKI on the pre-
viously quoted assertion by SCHUR.

However, OZEKI'S theorem 18 cannot be considered as original. For
example, the statement of the same theorem is to be found in [23] already
in 1962.

In connection with the same problems, see papers [21] - [30]1.

We stress particularly that in paper [31] (see also [8], p. 358) the ex-
pansion (60) was also considered and the following result was proved: If real
numbers ai (i = 1, . . . , n) satisfy (60), then (qo= 1)

(qU+1)2?,quqU+2 (r=O, 1, ...).

Here the positivity of numbers aj was not assumed.
Let (An' k) be defined by

(61)

(62) 2:
cciE(O,I)

CC1+' .. +ccn=k

. and let (Bn, k) be defined by

(n+k-l )B = ~
k

n,k L.,
II,E.N!r

'h+. . . +r3n=k

OZEKI proved the following two theorems.

If the sequence (a,) is positive and logarithmically convex, then

An-2' k An' k~(An-1> k)2 (n- 2 ~k~ 1).

If the sequence (ai) satisfie:; the assumptions of theorem 19, then

Bn-2'k Bn'k~(Bn-1>k)2 (n-2~k~I).

(63)

In [7]

Theorem 19.

(64)

Theorem 20.

(65)

1 T. POPOVICIU([30], p. 2) stated that he obtained the same result (with Oi>O) inde-
pendently of I. ScHUR. Besides, his result [29] was published before the book [20] which
contains SCHUR'Sresult as a private communication.

~.
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In [20], p. 52, we find that, if at> 0 (i = 1, 2, . . .), then inequalities

An.k-2 An.k~(An.k-t)2, Bn.k-2 Bn.k;;;;(Bn.k-t)2(66)

are valid.

The proof of theorems 19 and 20 is based on theorem 7. This proof
will not be derived here. In connection with the symmetrc forms (62) and
(63), i. e. inequalities (64), (65) and (66), see papers [21] - [28] containing
far more general results for the symmetricforms.

4. Two jnequalities

MOTT [32] proved the following assertion:
If f is a nondecreasing, nonnegative integrable

for every xE(a, b),
function on [a, b], then,

(67)
x b b

~
f

f(u)dU~~
r

f(u)du~ [f(U)du.
x-a b-a . .

a a x

In connection with (67) OZEKI [1] proved the following result:

Theorem 21. If the function x ~ p (x) is positive for xE [a, b] and if the func-
tion f is increasing on the same segment, then

where . .
H(u, v)=F(U, v) , F(u, v)= f p(X)f(x)dx, G(u, v)= f p(x)dx.

G (u, v)
u u

OZEKI'S proof in [1] reduces to the investigations of derivatives of the
function H with respect to u and v, where u and v are fixed numbers
from [a, b].

Inequality (67), as well as theorem 21, are considered in another sense
in [33], [34] and [35] (see references given in [35]).

OZEKI [7] proved also an inequality relevant to the arithmetic means of
real sequences. Nemely, he proved that the following assertion holds.

Theorem 22. If I~k an I~ M (n = 1, 2, . . .), then

I~k An I~ M (n= 1, 2,.. .),
k+l

where k is a fixed natural number and the sequence (An) is defined by (1).
The proof of this theorem is not quoted here because it is entirely

analogous to the proof of theorem 3 of this paper.

5. A result for Bernstein's polynomjals

Let us asume that the function f is defined and continuous on [0, 1].
BERNSTEIN'Spolynomial Bn(x; f) of order n = 0, 1, . . . of the function f is defined by

B,,(x;f)= i (
n
)xk(I-XY'-kf(~).k-Ok n
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It is a well known fact that the sequence Bn (x; f) uniformly converges
towards f(x), when n -+ + 00 under the quoted assumptions for the function f.

With reference to BERNSTEIN'Spolynomials OZEKI in [1] proved the
following theorem (which is here presented for segment [0, 1], while in [1]
thus theorem was proved for the segment [a, b]; they are equivalent to each
other).

Theorem 23. Let us asume that the function f is defined, positive and twice
differentiable on [0, IJ. If the function I' is decreasing on [0, I], then, for xE [0, 1]
and n = 0, I,..., the following is true

(i) Bn+l (x; f»Bn(x; f) and (ii) Bn(x;f)<f(x).

It is known that a differentiable function is concave (in the strict sense)
if and only if the function I' is decreasing. Therefrom it follows that OZEKI'S
theorem concerns twice differentiable, positive concave functions.

OZEKI proved this theorem in 1965. As far as the conclusion (ii) of this
theorem is concerned, it is an immediate consequence of the assertion under (i).

However, the first part of the theorem was already known in 1957.
Namely, ARAMAin paper [36], from 1960, proved the following result.

Theorem 24. (a) If f is a function convex, nonconcave, polynomiall, nonconvex,
concave on [0, 1], then the sequence Bn (x; f) is decreasing, nonincreasing, stationary,
nondecreasing, increasing, respectively.
(b) For an arbitrary continuous function f and ~1' ~2' ~3E [0, 1] the following
equality2

. . X (J-x) .
Bn+l (x,f)-Bn(x,f)= -

n(x+ 1) [~l' ~20 ~3'.n

is true.
As we see from [36] this theorem was published in Romanian in [49]

already in 1957. From [36] we also learn that this theorem was rediscovered
in 1959 by SCHOENBERG[50].

Thus OZEKI'S theorem 23 contains also superfluous assumptions thatf>0
and that f" exists for xE [0, 1] which is naturally a consequence of the proof
given in [1].

In connection with theorem 24 we wish to quote the following. In [37]
the oposite assertion is also proved: If the function f" is continuous on [0, 1]
and if Bn+l(X;f)~Bn(x;f)(n=O, 1,...; xE[O, 1]) is valid, thenfis convex
on [0, I]. In paper [38] among other things conditions on the function fare
also given so that the inequality

(68) /12Bn (x; f)=Bn+2 (x;f) - 2Bn+l (x;f) +Bn(x;f)~O

is valid for all x E [0, I] and n = I, 2, . . .. POPOVICIU in [39] gave some
general results for interpolation polynomials analogous to previously proved

results. In paper [40] the sequence ~ Bn (x; f) is investigated. Similar results
dx

I Continuous function f will be called polynomial if and only if !!h2f(x) = 0 for
all h>O.

2 For the definition of expression [Xl" . ., Xn+I; f], see [8], P. 16.
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are contained in paper [41). MOLDOVANin [42) weakened the assumptions under
which a theorem inverse to theorem 24 is valid. Similar properties of some
positive linear operators were investigated in [43) and [45). KOSMAK[44) gave
a characterization of nonconvex functions using BERNSTEIN'Spolynomials. Let
us denote by S the class. of all star-shaped functions on [0, 1) L. LUPAS
in [46) showed the validity of the implication fES ~ Bn (x; f) ES. HOROVA[47)
weakened the conditions under which inequality (68) holds. In [48) results
similar to the above are obtained for SZAsz-MIRAKYAN'Soperators.
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Added in proof

Dr A. LUPA~, acting as referee for this paper, informed us that there
exist certain additions to the results exposed here. He gave us the following
references:

1. W. B. TEMPLE:Stieltjes integral representation of convex functions. Duke Math. J. 21 (1954),
527-531.

2. D. D. STANCU:On the monotonicity of the sequence formed by the first order derivatives
of Bernstein polynomklls. Math. 'Z. 99 (1967), 46-51.

3. A. LUPA~,M. MOLLER:Approximationseigenschaften der Gammaoperatoren. Mat. Z. 98 (1967),
208-226,

4. H. H. lliPArHMOB,A. .l( r AWKHEB:05 OdHOUnOCAedoSame/lbHOCmUIlUHeUHbUXno/lOJ/Cu-
me/lbHbXonepamop06. .l(AH (Doklady) CCCP 193 (1970), 1222-1225.

5. A. LUPA~.M. MOLLER: Approximation properties of the Mn-operators. Aequationes Math.
5 (1970), 19-37.

6. B. WOOD: Graphic behaviour of positive liniear operators. SIAM J. Appl. Math. 20 (1971),
329-335. .

7. J. TZIMBALARIO:Approximation of functions by convexity preserving continiJouslinear operators.
Proc. Amer. Math. Soc. 53 (1975), 129-132.

Judging by [1] it was W. B. TEMPLE who first obtained the results of
theorem 24 (and hence the results of theorem 23) which are in connection with
the behavioul of BERNSTEIN'Spolynomials of convex functions. In other words
theorem 24 was rediscovered by O. ARAMAand then by N. OZEKI.

D. D. STANCU[2] examined the behaviour of BERNSTEINpolynomials of
convex functions. His paper presents a complement and a generalization of the
previously ceted paper of O. ARAMA.

In paper [3] A. LUPA~and M. MULLERconsidered monotony and convexity
of the sequence (GJ of linear operators of the form

xn+1

J
+GO

(n )Gn{/; x)=~ e-XUu"f -;; du,

o
where f is a given function.

Paper [4] also contains certain results connected with linear operators
defined on the cone of convex functions.

Certain properties of the n-th MEYER-KoNIG and ZELLER operators of
convex functions on [0, I] were considered in [5], while [6] contains some new
results for the operators introduced in [3].

Finally, paper [7] contains necessary and sufficient conditions which
ensure that convexity with respect to a given CEBYSEVsystem remains invariant
under a continuous linear operator T: C [a, b) -+ C [a, b).

*
Mr. G. KALAJDZI(~has some of OZEKI'S papers elaborated in detail,

completed and removed the shortcomings and thereby he had facilitated to the
authors the composition of this exposition.

The authors of the exposition are grateful to Prof. P. R. BEESACK,Prof.
P. S. BULLENand Dr A. LUPA~ who have read this article in manuscript and
gave us useful suggestions.


