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Dragoslav S. Mitrinovi¢, Ivan B. Lackovi¢ and Miomir S. Stankovié

PArRT II: ON SOME CONVEX SEQUENCES CONNECTED
WITH N. OZEKI'S RESULTS

This is a research-expository paper with certain additions and contributions to
the treated matter. In the paper some priorities are also established and the
results of OZEKI are critically exposed.

0. Introduction. N. Ozeki published seven papers ([1]—-[7]) on matters related to convex
sequences and their inequalities. Excepting those numbered [1] and [2]), which were reviewed
rather incompletely?, the others were not even reported in the Mathematical Reviews, What
is more, to the best of our knowledge, both the Zentralblatt fir Mathematik and the
Referativnyi Zurnal Matematika seldom report on what appears in the Japanese periodical
called Journal of College of Arts and Sciences, Chiba University (which is where all Ozekr’s
papers have been printed). We required a lot of time and considerable effort, trying to get
hold of Ozekrs papers. Unfortunately, three of the papers (1), [3] and [4]) were printed in
Japanese, which meant extra difficulty for us to overcome,

In Ozexr’s papers there are some attractive new results but they contain several actual
mistakes which have had to be resolved first, before we could arrive at the theorems he has
established, Ozex1 provides an extremely small number of references, and it appears that
his ideas seldom stem from the achievements described in mdthematical literature, Ozek1
arrived yet again at some of the known results, creating interesting and simple methods for
proving them. In some instances he arrived at conclusions lees plausible than those already
established, Reading OzEKI's papers involves a certain amount of strain on account of the
misprints in which they abound,

It is almost an axiom that results which are not well exposed in at least one review
journal are almost lost for mathematics. This is even more so if a paper is not annoted at
all in those journals and that is not a rare event. The following exposition attempts to review
Ozekr’s results critically and also to fill in the gaps, and at the same time provides extracts
from other mathematicians’ papers which delved in matters related to convex sequences. It
is thus made possible for those from the mathematical circuit to acquaint themselves with
Ozexr’'s achievements,

1. Some results for convex sequences

In Ozexr’s papers one of the basic concepts is the concept of a convex
sequence. That is why, at the beginning of this exposition, we shall give seve-
ral definitions which will be used troughout this paper.

Let (a,) (n=1, 2, ...) be a real sequence. The k-th order difference of
sequence (a,) is defined by

A%g,=a,, AFa,=AF1q,  —AF-1q, k=1,2, ..).
Instead of A! we shall write A. '
* Presented in 1977 by P. R. Beesack, P. S, BULLEN and A. Lupas,

1 See: Mathematical Reviews 34 (1967), review 6009 by S. Izumt and 39 (1970), review
by U. C. GuHA,
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The following definition introduce the notion of a convex sequence of
order k(k=0,1, ...).

Definition 1. A sequence (a,) is said to be convex of ordes k if A¥a,=0 for
all nEN. Particularly, a convex sequence of order k=2 is said to be convex.

On the basis of def. 1, the following definition can be introduced.

Definition 2. A positive sequence (a,) is said to be logarithmically convex of
order k(k=0, 1, ...) if the sequence (loga,) is convex of order k.

One of the first results of Ozekr which we encountered, relevant to convex
sequences, is the following theorem proved in [1] (see also [8], p. 202).

Theorem 1. Let (a,) be a real sequence and let the sequences (A,) and (B,) be
defined by

(1 A,=1 S a, B=N4, (=1,2, ...

IM=

=

Then, if the sequence (a,) is convex, the following holds

. n—1
) B,,;m B, , n=2, 3,..)
(ii) sequence (A,) is convex, i.e. A24,20(n=1, 2,...) is valid

In the above mentioned paper [1] Ozeki gave a proof of this theorem,
by elementary methods. A more general theorem is proved below (see theorem
4) and for this reason the proof of theorem 1 is omitted here. Let us mention
only that the proof of statement (ii) follows directly by repeated application

of the inequality quoted under (i) and the fact that B2=% AZa,.

An assertion similar to that of (ii), theorem 1, is valid for logarithmi-
cally convex sequences, i.e. OZEKI in [1] proved the following theorem:

Theorem 2. If the sequence (a,) is logarithmically convex, then the sequence
(4,), defined by (1), is also logarithmically convex, i.e. the implication

(an+1)2§an ., = (An+1)2§AnAn+2 n=1,2,..)
is valid.

Later on, we shall give a more general theorem together with its proof
(see theorem 7), so that the proof of theorem 2 is omitted.

As stated by Ozekl himself in {1] these two theorems represent answers
to problems set by Ryo HIROKAWA.
Summarizing these results in [1] OzEK1 quotes the following list of im-
plications:
(@18, a5,; > Gy —20,,,+a,20,
Y _ U
(An+1)2§AnAn+2 = A,,+2—2A,,+1+A,,20,

where the quoted inequalities hold for evevry nEN and the sequence (4,) is
defined by (1). Let us mention that implication A?loga,=0 = A%q,=0 was
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already proved in 1928 by MoONTEL [9], where, among other results, a neces-
sary and sufficient condition for the logarithmic convexity of a real sequence
was given (see also [8], p. 19, as well as the literature related to it).

Naturally, a question arises whether assertion (ii) of theorem 1 could be
extended to to the class of convex sequences of order k=3. In paper [6] an
answer to that question is provided in the form of the following theorem (see
theorem 3, p. 3, in [6]).

Theorem 3. Let (a,) be a positive sequence. Then from the k-th order convexity
of sequence (a,), follows the k-th order convexity of the sequence (A,), where A,
is defined by (1).

Prior to proceeding to the proof of this theorem, we have to make se-
veral remarks. In the proof quoted in [6] the assumption of the positivity of
the sequence (a,) was not used, which means that theorem 3 holds for arbit-
rary real sequences. On the other hand, while the basic idea of the proof is
carried out with a series of errors. Some of these errors are removed when
proving theorem 3 in [7], though we must state that this is not explicitly
stressed.

Retaining OzEek1’s basic idea, we shall give a shorter version of the proof
of theorem 3.

Proof. 1t is easily verified that equality
@ (n+k)A¥A,=(n—1) A4, ,+Aka, n=2,3,..)

holds (OzekrI's correct proof of (2), which is somewhat longer, is given in
lemma 2, on page 3 of [7]). By a straight forward calculation we find

kg1 Ak
3 A Al~k+l Akq,.

By a successive applications of formula (2) for n=2, 3,... and by (3), we
find that inequality

(";") A d,z) Mg 20 (=12, ..)
n

is valid, which completes the proof of theorem 3.[]

The proof of equality (2) given in [6] is not correct. On the other hand,
the same equality is correctly proved in [7], but this second proof of Ozexi
is complicated. By applying the well known formula (see, for example, [10],

pp. 7—8) .
k

Ata,b,=S (If)A"a,,A""b,,ﬂ

i=0\?
to equality nd,=3 a; (which directly follows from (1)), (2) follows directly.
k=1

~ Starting from (ii) in theorem 1, Vasi¢, KECKIC, Lackovi¢ and MITROVIC
[11] proved that the statement of theorem 3 holds without assumption on the
positivity of sequence (a,). The proof given in [11] is considerably shorter then
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Ozekr's proof given in [6]. OzEKI could not know the result obtained in [11],
because this paper, communicated in 1970, was published in 1972.

The results obtained in theorems 1, 2 and 3 are generalized in another
direction, too, in papers [2], [11] and [12].

Let us consider a triangular matrix of real numbers (p, ;) (where
j=0,1,...,m n=0,1,...). Let us define the sequence (s,), for a given
sequence (a,) by

n
)] Cp= Z Prn—jY-
j=0
In paper [2] OzexI obtained the conditions on a triangular matrix (p,,;),

implying that for each convex sequence (a,) the sequence (s,) defined by (4)
is also convex. This result of OZzEKI reads:

Theorem 4. A necessary and sufficient condition that the implication
A%2g,=0 = A%c,=0

is valid, for every sequence (a,), where the sequence (o,) is given by (4), is that
the following conditions, for every n,

) Uy = 2% 5+ %yiq, 01 =0,
(6) ﬁn—l.n—-z—zgn.n—l +Bn+1,n=0’
(7) pn—l,n—-k—l_‘zgn,n—k"l'Bn+1,n——k+120 (k=2""’n'—1)’
(® Bri1,1— 2P 020,
) Brs1,020
hold, where
k
(10 tuk= S P
j=0
k
(11) Bn,k= z %, 5o
i=0

In paper [2] Ozexi gave only the proof of the sufficiency of the
conditions (5) — (9). However, we shall give a proof that the conditions
(5) — (9) are also necessary.

Proof. (i) Conditions (5) — (9) are sufficient. Let us define the sequence
(e,) (k=0, 1,...) in the following manner

(12) e,=ay, e;=A0Aa,, e, =A0a_, k=1, 2,...).

On the basis of the assumption that the sequence (a,) is convex we find
that ¢,=0 (k=2, 3,...), while ¢, and e, can be of an arbitrary sign. On the
basis of (12) we have

(13) a,=eyt+ne,+(n—1)e,+(n—2)e;+ - - - +e, (n=0,1,...).
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Applying (4) and (13) we get 6,= > a,,,_je;, which upon evident transfor-
j=0
mations gives

(14 A6, i1 =(Fnet,ne1 = 2% %1, n41) €

+ (Bn—l.n—z - ZB,,, -1t Bn+l.n) €

n
+ z (Bn—-l,n-—k—-l—'2ﬁn.n—k+ﬁn+l.n—k+1)ek
k=2

+ Bre1,1—2Bn0) €nt Brit,0€niy-

From the above equality and conditions (5) — (9) it follows that A%c,_,=0.
Which proves that the (5) — (9) are sufficient.

(ii) Conditions (5) — (9) are necessary. Let us choose, first, the sequence (a,)
defined by a,=1(n=0,1,...). This sequence is convex and e,=1, ¢,=0
(k=1, 2,...). Since, by assumption, for any convex sequence (a,) the sequence (c,)
defined by (4) is convex, too, we find on the basis of (14) that

(15) Ao, =y~ 20+ Uy, sy 20

Analogously, if we select a,= —1(n=0, 1,...) (this is also a convex sequence),
we get = —1, ¢,=0(k=1,2,...) so that from the assumed implication on
the convexity of the sequences (a,) and (s,), on the basis of (14) we have

(16) AZ o'n—l= -(“n—-l.n—l_2an,n+°‘n+lm+])go‘

On the grounds of (15) and (16) we infer that (5) is valid. From this it
follows that (14) becomes

(17) A? o-n—l=(Bn—l.n—2_"2Bn,n—l+‘3n+hn) €
+ z (Bn—l.n—k-—l + 2ﬁn.n—k + Bn+l,n—k) €k
k=2

+Bai11— 2B o) €ntBrir,onsr-

Now let us assume that g, =k (k=0, 1,...). Since A?q, =0, we have A2q¢, =0
Therefrom, since e,=e, =0(k=2,3,...) and ¢, =1, we get

(18) A? °'n-x=Bn—1,n—2_2§n.n-—1+Bnﬂ.ngo'

On the other hand, in the case when a,= -k (k=0, 1,...), since e;=¢,=0
(k=2,3,..) and ¢,= — 1, we find that

19 Azcn—1= ~Bret.n—2—2Bnn—y +Brssy,w=0.

From inequalities (18) and (19) we see that the condition (6) holds. In the
other words, equalities (14), i.e. (17), take the form

n—1

(20) A? Op.1™= kéz (ﬂn-—l. n—k-1"" 2 Bn. n—k+ Bnﬂ, n-—k+1) €

+ (Brer, 1= 2 Bn, o) €n+ Brst, 0 €nir -
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Now let us choose sequences (a%) (j, k=0, 1,...) so that
ak=0 Osksj-1), ak=k—j+1 (kzj).
For the jth sequence we have, on the basis of (12),
ek=0 (k+j), ei=1.
Using the sequence (ak) U= 2 . n+ l) we_find on the basis of (20) that

Ba1, n—j—1 -2 Bn, n—jt Bnﬂ n—j+1 2=jsn-1),
(21) A? Op_1= Bnﬂ. 17 2 Br o ’ R (j=n),
o Brit, 0 (j=n+1)..

Since the sequences (@) C<jsn+1) are comex then A?o,_ 20, ‘so that
by (21) ‘we get, in turn, conditions (7)—(9). This completes the proof of
theorem “4.[]

From OzEKkr's paper [2] it cannot be seen why the proof that conditions
(5)—(9) are necessary, is omitted (part (ii) of the proof of theorem 4) because
the same.is not at all simpler than the first part of the proof of theorem 4.
Otherwise this idea, presented in part (ii) is taken from [11] and [12]). In [11]
a transformation of a sequence (a,) of the form

Z P

(22) C4,=52 (n=0,1,...),
) : ’ zpk
k=0

is considered, where p,>0 (k=0, 1,...). The following theorem was proved
for the sequences (a,) and (4,).

Theorem 5. A necessary and sufficient condition that for every sequence (a,) the
implication

A2a20:>A2A20 (n=0,1,..)

is vahd where the sequence (A,,) is given by (22), is that the sequence ( P (of
positive weights p,) is of the form

n—1
: [T@+a—vr) :
' =1
= e =2,3..)
@) = s =2,3,..)
where p, and p, are arbttrary posmve numbers

Let us obsetve that the sequence (A,) given by (22), is of the form (4),
if the triangular matrix (p,,;) is chosen in such a way that

Pn—k
Pn =%

27

C=0.

(k=0, ..., m n=0,1,...)
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Theorem 5 is a special case of theorem 4, namely each sequence (p,) of the

form (23) satisfies conditions (5)—(9), where the sequences (x, ;) and (B,,;) are

defined by (10) and (11). The sole advantage of theorem 5 w1th respect to

theorem 4 is that the weights (p,) in theorem 5 are explicitly obtained and

conditions (5)—(9) are quite complicated to verify. It is certainly made possi-

ble by an additional condition on matrix (p,,;), which reads > Pni=1, whe-
k=0

e p,, >0.
LAckovIC and SMIC [12] made the following generalization of theorem 5.

Theorem 6. A necessary and sufficient condition that the implication
Ara, =20 => A'4,=0 (n=0,1,...)

is valid for every sequence (a) and sequence (A,) given by (22) is that the se-
quence (p,), for n=r, r+1, ..., is of the form

@) pam P T (4 Dyt 45, )+ - D)

n nl (Po+ . +pr—z)"—'+lk=r__2 0 r—2 r—172
where p,, ..., p,_, are arbitrary positive numbers and r=2 is a fixed natural
number.

As stated by Ozeki himself in theorem 4 from [2], the following asser-
tions are immediate:

(@) If sequence (a,) is convex, then the sequence

Gyt ot ay
n+1

G"
is also convex.
(b) If the sequence (a,) is convex, then the sequence oi HOLDER’S means is
convex too. HOLDER’s means are defined by
HE+ ...+ HY
, o s

H:=a.+---+a,. HEH
n+1 n+1

(k=1,2,..)

(c) If the sequence (a,) is convex then the same property is possessed by the
sequence (5,) defined by
n n
(ot o)

2’1

G, =

All the quoted particular cases are also consequences of theorem 5. In
paper [2] Ozek1 gave some simple assertions for CESARO means (%) of the
sequence (a,). In [11] the connection of these theorema with the sequences of
bounded variation is given.

In [2] Ozex1 presented (see theorem 2 from [2]) a theorem for logarith-
mically convex sequences analogous to theorem 4. Prior to proceeding to the
statement and the proof of this theorem we shall introduce some notations:
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Let the sequences (p,) and (P,) (n=0, 1, ...) be strictly positive and let

Dk—1P Py P,
go= il g =Terfin o, 2, ),
Pk Py

For a given sequence (a,) let the sequence (s,) be defined by

25 c=‘i+71“!;“—~ (n=0,1,...).

Theorem 7. Let us assume that the sequences (p,) and (P,) satisfy the conditions

(26) Qo=0,

@7 20,>1>0, (1=1,2,..)

(28) nan (n=1, 2, )y

(29) (I—Qn—l Qn)2§4qn(l_Qn—l) (I—Qn) (n=1, 2’ . ')'

Then, if a positive sequence (a,) is logarithmically convex, the sequence (c,), 6,
being defined by (25), is also positive and logarithmically convex. In other words,
the implication

e’<a, a,_, > 6.2<6,,,0,_, n=1,2,..)
is valid.
Proof. Let
(30) Lot t,=pyayt -+ +p.a, (n=0,1, ...).

The sequence (t,) is well defined by (30) and on the basis of that relation we
immediately have z,>0. From the same relation it follows that

Pn@y=1yt - -t, (t,—1),

so that with respect to the inequality p,e,>0 we get ¢,>1. Smce we have

assumed that a, ,a,,, =a,? we have

31 SER LIRS
( ) n+1 + ty(tn—1— 1)

Using (25), the definition of the sequence (z,) and relation (31) we have

2 t, t
Cpy_q G’H—l_an:(tO tl .. 'tn——l) t"(‘l)"——";t;;—’P—:z)

t, )
= (to Lo tn—l)zm (tn+1 - thn)
= C(tn+1 -1, Qn)
> C(‘In'n—l(tn_l)2 +1—1t, Qn)
th(ty-1—1)
= C1 ((qn tn-l - Qn tn—l + Qn) tuz + (t -1 1-2 qn tn-l) t,+4q, tn-l)’
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where C=0 and C,=0. Let us mention that we have introduced the notation

C

S S i
D) (n>1)

1

and furthermore lei
(32) f(tn) = (qn tn—l - Qn tn—l -+ Qn) tnz + (t -1 1-2 qn tn—l) tn + qn tn—-l .
On the basis of (28) we see that ¢,¢,_,—Q,¢,_,+ Q,>0. The discriminant of
f(), f being given by (32), has the form
D=ty — D) (6 (1-44,(1-Q2))— 1)

If D<O then it immediately follows that o, 0, ,—0,220. Let us consider
the case D>0. Since f,_,>1 we see that 7, ,(1—-44,(1-Q,))>1 and from
t,_,>1 we find that 1—-4¢4,(1-Q,)>0, i.e. the condition D>0 implies

1
33 I
(33 Y dgd-0n

The proof that in this case also o,_;0,,,—0,2=0 holds, will be
continued by induction. Let n=1. We shall prove that ¢,0,~0¢220. It is
directly verified that

)
cocz—cﬁ:‘;—:‘;z—(—gl12+(1—2Q,)t+1—Q,+§_:;‘:2)

2
is valid, where the notation t=2%~0 was introduced. Since C=M> 0,
Doy otz

then we have
oocz—af=0((q1—Q,)t2+(1—2QI)t+(1—Ql)—q1t2+ L)

0 %o

Poay
2C(¢, -2 +(1-20)t+1-0)=Cf (1)

(let us mention that this last relation is not proved correctly by OZzEeK1 in [2]).
The discriminant of the polynomial f, (¢) is

Dy=(1-20Q)-4(1-0)(q,-Q)=1-49,(1-0Q).

Using conditions (26) and (29) for n=1, we find that D,<0, i.e. f,(t)=0.
Thereby it is proved that ¢,6,—0c,2=0.
Let us further suppose that

(34) Gy_20n— O-n"'lz = C(tn - Qn-—-l tn—l) =0,

where the positive quantity C was defined earlier. It is immediately verified
that

f(Qn—l tn—-l) = tn—l((qn - Qn) Qn—l2 tn-—lz + (Qn—l Qn +1- 2qn) Qn«l tn—l + (qn'—Qn—l))
= tn—l F(tn—l)



12 D. S. Mitrinovié, I. B. Lackovié¢ and M. S. Stankovié

holds. The discriminant of the quadratic polynomial F(t) is
= (1 - Qn—-1 Qn)2 -4 9, (1 - Qn) (1 - Qn—l)

and on the basis of the assumption (29) we have D, <0. In other words, we
find that

39) F(@ney ta_p) 0.

We have assumed that D> 0, which means that equation f(f)=0, where f
is defined by (32), has two distinct real roots o« and . Further we have

o+ fB 1
! ”_ T2 T 2 n— n ,,tn_z
¢ 2 2«q,.—Qn)zn_,+Q")(-Q YCARg AL

+ (2 Qn Qn—-l +1-2 qn) tn—l - 1) = szz (tn—-l)1
where C, is positive. For the so defined quadratic trinomial f, () we have
(36) f0)=-1

By a direct calculation we find that

37 A( C,20,- 1)@y 2C0,—D—1+44,(1-0,),

(]_Qn))

where, on the basis of (27), 20,>1 and the quantity C, is also positive. On
the basis of (29) we have

=0, O’

(-
4 25
9:.(1-0,) 2 -0,

so that from (37) we get
1

38 : —_———
%) 1. (1—4qn 1-g»
where C, is positive. On the basis of (33), (35), (36) and (38) we get

)cmmmuwém

(39) Qs i ==,y (D> 0.

From (34) it follows that t,=¢, , Q,_,. Hence on the basis of (35) and (39)
we get
Gp_i Ons1 — x> =C, [ (1) 20,

which completes the induction proof of Ozekr’s theorem 7.[]

Let us note that theorem 2 is a special case of theorem 7. Namely, if
in theorem 7 we take P,=1 and p,=p,=--.=p,=1 for all n=0, 1,
then assumptions (26) — (29) are satlsfled and from the logarithmic convexxty
of sequence (a,) the logarithmic convexity of sequence (4,) follows, 4, being
given by (1).

If the sequence (a,) (=0, 1,...) is convex, where a,=0, it is simple

to prove that the sequence —l—a,, n=1, 2,...) is nondecreasing. Namely, from
n
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n—1=

=0 and A?q,=0 we find that % a,=a,;. On the other hand, since A%q, =

0, we get

Gntr_ ‘2’_2" 1(5’1_“"“)

n+l n n+t n—1
so that the above assertion follows by induction. In a similar way if a posi-
tive sequence (a,) (n=0, 1,...) (@,=1) is logarithmically convex, then the
sequence Va,, (n=1, 2,...) is nondecreasing. This shows, for example, that
convexity of (a,) is a stronger condition than monotony of the sequence

1 . . . .
(-a,,) is. In references to the above we can raise a question whether this
n

weaker condition entails the analogous behaviour of arithmetic means defined
by (1). The answer to this problem is contained in the following two theorems
from [3].

Theorem 8. Let the sequence (b,) be nondecreasing and let the sequence (B,)
be defined by

(40) =— 2 kb,.
L
Then
. B,
1)b,=2B, and "“2—_.
() (n+1)b,=2B, and (ii) TR

Proof. (i) On the basis of (40) we have

X (n+1) n+1—an+(n+1)bn+l’
1.€.

2B,
@D Dby~ 2B = (b )27

((n+1)b —2B).
n+1

Since 3b,—2B,=b,— b, 20 assertion (i) follows from (41) by induction.
(ii) Since :

(n+1) n+1 (n+2)Bn=(n+l)bn+1_2-Bng(n+l)bn_2Bn:
on the basis of (i), (i) follows.

Theorem 9. Let the sequence (b,) be nondecreasing and let
1 n
= o= 1).
w2 )
-1

Then VB <VB,,+1 (n=2, 3,...), and particularly Bzg—;—Bl is true.

Theorem 9 is proved (by induction) in a similar way to theorem 8.
Let us note that b,=1 stems from the assumptions of this theorem.

In the particular case, if we take that b, = - - - =b,=x>0, by theorem 9
we see that the inequality
1 1
T+Xx+.co+xn ES L4 x4 4x 0\ 0
( n ) —( n+1 )
holds.
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2. Some results concerning the convolution of sequences

Let two sequences (a,) and (b,) be given and let the sequence (¢,) be defined by
(42) Z.n= z ay bn—L
k=0

The sequence (¢,) is called the convolution of the sequences (a,) and (b,).
Formula (42) gives the coefficients of the development

+ o0 +ow + oo
S G xk=xk= (2 akx")(z bkx").
k=0 k=0 k=0
In many papers (see [14] — [19], as well as the references given in them) the
behaviour of sequence (42) was dealt with under different assumptions for
sequence (a,) and (b,). Some of the quoted papers treat sequences defined by
means of (¢,) given by (42).

OzEKI's papers contain also a certain number of theorems relevant to
such combination of sequences (a,) and (b,). So, for example, in paper [2] the
following assertion is proved.

Theorem 10. If a positive sequence (a,)(n=0, 1,...) is logarithmically convex,
then the sequence (c,)(n=0, 1,...), where o, is defined by

1t L /n
43 -— ( ) a
( ) Gy = an A k ks
is also logarithmically convex.

Together with sequece (43) we can consider the sequence (S,), where

(44) Si=S (Ha  @=0.1..0.

k=0
It is clear that the sequence (43) is logaritmically convex if and only if
sequence (44) has the same property. OzEekI’s proof, given [2], is based on
just such an idea.
However, an even more general result was already known in 1949,
Namely, DAVENPORT and POLYA in [16] proved the following

Theorem 11. Let the sequence (w,) be defined by
45 -3 ") Bu_tcs
( ) Wy z (k a4y Oy_i

k=0
where the sequences (a,) and (b,) are positive and logarithmically convex. Then
the sequence (w,) is also positive and logarithmically convex.

It is clear that (45), for a positive and logarithmically convex sequence
b,=1(n=0, 1, ...), reduces to (44), i.e. OzEKI's theorem 9 is a special case
of theorem 11.

In [4] Ozex1 considered a sequence related to convolution (42). Namely,
if (a,) and (b,) are given sequences, let the sequence (c,) be defined by

(46) 2‘17 Z b, (=0, 1,..)
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In connection with this sequence the following theorems were proved in [4].

Theorem 12, Let positive sequences (a,) and (b,) be convex and let us suppose
that a,=za, and b, =b,. Then the sequence (c,) defined by (46) is convex. In
other words, if

(47) a,za,, Ala, =0, A2b,_ 20 (i=1,2,..),

then
A?¢

The following theorem concerns logarithmically convex sequences.

=0 (i=1,2,..)

i-1=

Theoreﬁ 13. If positive sequences (a,) and (b,) satisfy the conditions
a_,a;.,2a? b,_; b, ,=2b2 (i=1,2,..)

then the sequence (c,) defined by (46) also satisfies the condition

(48) ey Cize?  (i=1, 2,..)).

It is simple to prove that sequences (a,) and (b,), satisfying the assum-
ptions of theorem 12, are positive and nondecreasing. This follows from (47)
by induction. The proof of theorem 12 given in [4] is very similar to the
proof of theorem 7 and we shall not quote it here.

. By a direct calculation we can verify that for every sequence (c,) equality
Al(n+1c,=(n+1)A%c,+2Ac,,,

is valid. This implies that .if the sequences (a,) and (b,) satisfy the conditions
of theorem 12, then not only the sequence (c,), given by (46), is convex, but
even convolution (42) of sequences (a,) and (b,) is convex. The related prob-
lems were studied in [17].

The proof of theorem 13 given in [4] is also very similar to that of
theorem 7 so that this proof will not be quoted here. In [18] it was noticed
that if positive sequences (a,) and (b,) are logarithmically convex, then their
convolution (42) needs not, in general, be logarithmically convex. This is not
contrary to OzeKr’s theorem 13. The sequence (c,), defined by (46), can be
written in the form c,,=—1—1 €,, Where ¢, is given by (42). By this substitution

n+
inequality (48) becomes

G+12
i(i+2) i—-1%i+1

=z, (=1, 2,..)

which is a weaker condition than that of the logarithmic convexity. On the
other hand if positive sequences (a,) and (b,) are logarithmically concave, then
their convolution (¢,) defined by (42) is also logarithmically concave. In a
particular case this result was obtained for the first time by KaLuza [14] in
1928. Somewhat later, in 1933, KARAMATA [15] again arrived at the same
result. Later on the same question was dealt with in papers [16] — [19].

From the above mentioned results for the logarithmically concave sequences
we get the following assertion for the sequence (c,) defined by (46): If positive
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sequences (a,) and (b,) are logarithmically concave, then the sequence (c,) defined
by (46) satisfies the inequality

i(i+2 .

(’l(’—l-'l—)zc' lcl+l§cl (l=], 2, .-.). v .
This condition is now weaker then that of the logarithmic concavity of
sequence (c,). A

From the foregoing we infer that theorem 13 cannot be compared with

the theorem on the logarithmic concavity of the convolution of positive and
logarithmically concave sequences.

3. On the coefficients of Taylor’s expansions

In this section we shall present several of OzEKI’s results related to
functions given in the form of power series with coefficients which are convex
or logarithmically convex.

The following definition, introducing a relation among real functions, will
considerably shorten this exposition.

+ o0
Definition 3. Let us consider two formal power series 3 ayx* and z b, x.
k=0 k=0

These series are said to be in relation >, which is denoted by
+ o0 + o0
> apxk> 3 by xk,
k=0 k=0

if the condition ay=b, (k=0, 1, ...) is fulfilled.
In [3] Ozek1 proved the followmg results related to the relation >.

Theorem 14. Let us assume that f(x)= Z Dpx*. If the positive sequence
(pp) (k=0, 1, ...) is logatithmically convex, then

fE-D(x) fEH)(x) FALTENY _
(49) (=1t (k+1) >( k! ) (k=1,2, ...,

where the derivatives fUm are taken in the formal sense.

The proof of this theorem, as stated in [3], follows immediatcly' from the
calculation of the coefficient of x", in the difference of the left and the right
sides of (49).

Ozex1 [6] also studied some properties of the relation > for polynomials.
Namely, the following very simple assertions were proved in [6]:

(1) Let P(x), Q(x) and R(x) be polynomials with positive coefficients and of
equal degree n. Then

a) P)>P(x),
b)) P>QMAQM>P(x) > P(x)=02(x),
) PHER>2MAQ®)>R(x) = PX)>R(x).
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(i) If P,(x), Cp(®), Pp(x), O (x) are polynomials of degree n and m repecti-
vely, with positive coefficients p;, q;, p;, q; (=0, 1, ..., n; j=0,1, ..., m)
for which

P,(0>0,(x) and P, (>0, (x)
holds, then

Py(0) Py ()30, (%) @ ().
(iii) If P(x) and Q(x) are arbitrary polynomials of equal degree, then from
the condition P (x)>Q (x) follows the condition
fP(x)dx>fQ(x)dx.
4] ]

The proofs of these assertions are simple.
Using the properties of relation >, OzEKI [6] proved

Theorem 15. Let (a,), (b,) and (c;) be sequences of real numbers for which the
conditions

(50) Tl Graud= 3 ("1)orr=t @=1),
i=0 j=o\ #
(51) ﬁ(x+a2,-)=§('f)c,x"—' (co=1)
1=1 j=o\?!

are valid. Then, if ;>0 and a,a;,,—a;,,>20 (i=1, 2, ...), we have
bzc(i=1, ..., n).

We will give a somewhat shortened version of OZzEKI’s proof.

Proof. On the basis of the assumptions of theorem 15, we can see that

(52) x+a)(x+ta,)>E+a,,)(x+a) (>

is true, which is obtained directly by comparing polynomial coefficients on the
left and right sides of (52).

Further, let us define polynomials P, and P, by
[ i
Pzi(x)=n(x+a2j)a P2i+1(x)=n(x+azj+1)-
j=1 j=0

By induction, on the basis of (52), and using the transitivity of the relation >,
we get
(3) P,,_ (X)>(x+a,) Py, ,(x) n=2,3,...)

From the logarithmic convexity of the sequence (a,), by a direct ca’culation,
we see that

(54 an+na2,,+1—(n+l)qz,,20 n=1,2,...)

2 Publikacije Elektrotehnitkog fakulteta
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holds. If P (x) = Py,_; (X) + 1 (X + @yn1 ) Py, (X) — (n+ 1) Py, (x), Where P, and Py ,,
are the polynomials defined above, on the basis of transitivity of the relation >
and (54) we get that P(x)>0 i.e.

(55) Pop y () +1 (X + 8y 1) Pyp_y (X) = (n+ 1) Py (x) >0

is true. By induction, on the basis of (53) and (55), it could be shown that,
under the assumption of theorem 15,

(56) (ﬁ (et az,-ﬂ))' >@+1) [T +ay)

=0 i=1
holds. Further, using (50), (51) and (56), on the basis of the property (iii) of
relation >, the assertion of theorem 15 follows.

Ozek1 [5] also gave some theoremes related to coefficients of functions
given in the form of a prower series. Namely in [5] the following result was
proved.

Theorem 16. Let us assume that the sequence (q,)(n=1,2,..) is defined by
the. following formal equality

+ o + o0 -1
(57) 1+zquk=(1—zpkxk) ,
k=1 k=}
where the sequence (p,)(n=1,2,...) is given. In other words, let
n—1
(38) G=P1s Gu=Pnt 3 Pun  (1=2,3,..);
k=1

then, if the positive sequence (p,) is logarithmically convex, we have
(59) qn>0 and qnqn+2gqn+12 (n=15 2’)

The proof of this theorem, given in [5] by Ozeki, is based on the
following theorem given in the same paper.

Theorem 17. Let D,(n=1,2,...) denote the determinant of order n with
entries a;;, where

a;=0(jzi-1), ay=—-1(=i-2), a;=0(j<i-2) (G, j=1,..., n).
Then, if

i 9y
G Gy
then (—1)*+'D,z0 (n=1,2,...).

The proof of this theorem is carried out by induction in [5].

We wish to mention that the positivity of the coefficients g,, under the
quoted assumptions of theorem 16, was proved already in 1933 in [15].
Similar, ‘but much more general results were obtained in [17].

According to the monograph [20], p. 164, SCHUR proved the following
assertion.

<0(lsp=sgsm 1=<i<j=n),
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If a,,..., a, are positive real numbers and if sequencee (q,) is defined by

(60) ———Hf("*f Ya.,
H(l xap =t

then the sequence (q,) is logarithmically convex.

OzeK1 in [S], parallel with the above expansion, considered the expansion
(61) | H (1-xa)=1+ z (—1)'( )p,x’

and proved the following result:

Theorem 18, If real numbers a,, ..., a, are positive, then the sequence (p,)
defined by the expansion (61) is logarithmically convex.

The very simple proof of theorem 18 is based by Ozeki on the pre-
viously quoted assertion by SCHUR.

However, Ozekr’'s theorem 18 cannot be considered as original. For
example, the statement of the same theorem is to be found in [23] already
in 1962.

In connection with the same problems, see papers [21] — [30]%.

We stress particularly that in paper [31] (see also [8], p. 358) the ex-
pansion (60) was also considered and the following result was proved: If real
numbers q;(i=1, ..., n) satisfy (60), then (g,=1)

(q2r+1)2§q2r 92r+2 r=0, 1,...).

Here the positivity of numbers a; was not assumed.
Let (4,,,) be defined by

(62) (") A, .= S g am
k %0, 1)
- +an=k

_ and let (B,,,) be defined by

n+k—1
(63) ( X ) B, = Z alﬁl . anﬁn;
B -
B1t: - +Bn=k

In [7] Ozek1 proved the following two theorems.

Theorem 19. If the sequence (a;) is positive and logarithmically convex, then

(64) Ay ssi Ams k= Aa_ys 1) (n—-2zkz=1).
Theorem 20. If the sequence (a;) satisfies the assumptions of theorem 19, then

(65) ) Bn——Z’k Bn’kg(Bn--pk)2 (n'—'zgk;l).

1 T, Poroviciu ([30], p. 2) stated that he obtained the same result (with 2;>0) inde-
pendently of I. SCHUR. Besides, his result [29] was published before the book [20] which
contains SCHUR’s result as a private communication,

2
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In [20], p. 52, we find that, if a,>0(=1, 2, ...), then inequalities

(66) An.k—z An.ké(An,k—l)z’ Bn, k-2 'Bn kz( o k— 1)
are valid.

The proof of theorems 19 and 20 is based on theorem 7. This proof
will not be derived here. In connection with the symmetrc forms (62) and
(63), i. e. inequalities (64), (65) and (66), see papers [21] — [28] containing
far more general results for the symmetric forms.

4. Two inequalities

Mort [32] proved the following assertion:
If f is a nondecreasing, nonnegative integrable function on [a, b], then,
for every x&(a, b),

x b b
(67) — f f@dus | [ f@dus [ F(w) du.

In connection with (67) Ozek1 [1] proved the following result:

Theorem 21. If the function x> p(x) is positive for xCla, b] and if the func-
tion f is increasing on the same segment, then

H(t, t)sH(t, )< H(,, 1) (h<t,<ty),
where

H, )—F‘(“ D F(u,v)= fp(x)f(x)dx G (1, v)= fp(x)dx

>

Ozekr’s proof in [1] reduces to the investigations of derivatives of the
function H with respect to w and v, where u and v are fixed numbers
from [a, b].

Inequality (67), as well as theorem 21, are considered in another sense
in [33], [34] and [35] (see references given in [35]).

Ozek1 [7] proved also an inequality relevant to the arithmetic means of
real sequences. Nemely, he proved that the following assertion holds.

Theorem 22. If |A*a,|sM(@n=1,2,...), then
M
A4 | = )
| A,,|_k+1 n=1,2,..)

where k is a fixed natural number and the sequence (A,) is defined by (1).
The proof of this theorem is not quoted here because it is entirely
analogous to the proof of theorem 3 of this paper.

5. A result for Bernstein’s polynomials

Let us asume that the function f is defined and continuous on [0, 1].
BERNSTEIN’s polynomial B, (x; f) of order n=0, 1, ... of the function f'is defined by

B, (x; f)= z( )xk(l-x)rkf(f).

k=0
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It is a well known fact that the sequence B,(x;f) uniformly converges
towards f(x), when n— + co under the quoted assumptions for the function f.

With reference to BERNSTEIN’s polynomials Ozekl in [1] proved the
following theorem (which is here presented for segment [0, 1], while in [1]
thus theorem was proved for the segment [a, b]; they are equivalent to each
other).

Theorem 23. Let us asume that the function f is defined, positive and twice
differentiable on [0, 1]. If the function [’ is decreasing on [0, 1], then, for x<[0, 1]
and n=0, 1,..., the following is true

() Busy (x:)>B,(x; f) and (ii) B,(x; ))<f(x)-

It is known that a differentiable function is concave (in the strict sense)
if and only if the function f’ is decreasing. Therefrom it follows that OzEkr’s
theorem concerns twice differentiable, positive concave functions.

Ozex1 proved this theorem in 1965. As far as the conclusion (ii) of this

theorem is concerned, it is an immediate consequence of the assertion under (i).

However, the first part of the theorem was already known in 1957.
Namely, ARAMA in paper [36], from 1960, proved the following result.

Theorem 24. (a) If f is a function convex, nonconcave, polynomial®, nonconvex,
concave on [0, 1], then the sequence B, (x; f) is decreasing, nonincreasing, stationary,
nondecreasing, increasing, respecttvely

(b) For an arbitrary continuous function f and &, &,, §,E[0, 1] the following
equality?

B, (5= By )=~ D, B, B ]

is true.

As we see from [36] this theorem was published in Romanian in [49]
already in 1957. From [36] we also learn that this theorem was rediscovered
in 1959 by SCHOENBERG [50].

Thus OZzEexr’s theorem 23 contains also superfluous assumptlons that f>0
and that f’ exists for x<[0, 1] which is naturally a consequence of the proof
given in [1].

In connection with theorem 24 we wish to quote the following. In [37]
the oposite assertion is also proved: If the function ' is continuous on [0, 1]
and if B,,,(x; )=<B,(x;f)(n=0,1,...; x&[0, 1]) is valid, then f is convex
on [0, 1]. In paper [38] among other things conditions on the function f are
also given so that the inequality

(68) A2B,(%; f)=B,+, (% [) = 2B, (%, /) + B, (x; )20

is valid for all x<[0, 1] and n=1, 2,.... Popoviciu in [39] gave some
general results for interpolation polynomials analogous to previously proved

results. In paper [40] the sequence dixB” (x; f) is investigated. Similar results

| ! Continuous function f will be called polynomial if and only if A22f(x)=0 for
all A>0,
2 For the definition of expression {x,,..., x,.,: f], see [8], p. 16,
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are contained in paper [41]. MOLDOVAN in [42] weakened the assumptions under
which a theorem inverse to theorem 24 is valid. Similar properties of some
positive linear operators were investigated in [43] and [45]. KosMaK [44] gave
a characterization of nonconvex functions using BERNSTEIN’s polynomials. Let
us denote by S the class -of all star-shaped functions on [0, 1] L. Lupas
in [46] showed the validity of the implication fES = B,(x; f)ES. Horova [47]
weakened the conditions under which inequality (68) holds. In [48] results
similar to the above are obtained for SzAsz-MIRAKYAN'S operators.
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Added in proof
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Judging by [1] it was W. B. TeMPLE who first obtained the results of
theorem 24 (and hence the results of theorem 23) which are in connection with
the behaviouir of BERNSTEIN’s polynomials of convex functions. In other words
theorem 24 was rediscovered by O. ARAMA and then by N. Ozexl.

D. D. STANCU [2] examined the behaviour of BERNSTEIN polynomials of
convex functions. His paper presents a complement and a generalization of the
previously ceted paper of O. ARAMA.

In paper [3] A. LupAs and M. MULLER considered monotony and convexity
of the sequence (G,) of linear operators of the form

+oo

G,(f; x)= of e yn f(;) du,

n

where f is a given function.

Paper [4] also contains certain results connected with linear operators
defined on the cone of convex functions.

Certain properties of the n-th MEYER-KONIG and ZELLER operators of
convex functions on [0, 1] were considered in [5], while [6] contains some new
results for the operators introduced in [3].

Finally, paper [7] contains necessary and sufficient conditions which
ensure that convexity with respect to a given CEBYSEV system remains invariant
under a continuous linear operator I':C [a, b] — C[a, b].

*

Mr. G. KALAIDZIC has some of OZzEKI's papers elaborated in detail,
completed and removed the shortcomings and thereby he had facilitated to the
authors the composition of this exposition.

The authors of the exposition are grateful to Prof. P. R. BEESACK, Prof.
P. S. BuLLEN and Dr A. Lupas who have read this article in manuscript and
gave us useful suggestions,



